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Abstract

This research effort will utilize a hierarchical dictionary-based approach for

canonical shape classification within measured synthetic aperture radar (SAR) phase

history data. This primary goal of this research is to develop an efficient framework for

dictionary based SAR feature extraction using modified 3-D radar scattering models

derived by Jackson. Previous work in this area relies on maximum likelihood (ML) es-

timation and similar approaches to extract shapes using 2-D signal models presented

in previous literature. In support of the primary goal, we include characterizations

of shape model redundancies caused by similar shape scattering responses. A Gram-

Matrix is used to identify these highly correlated dictionary columns (atoms) which

are “confuser” shape configurations that lead to poor feature identifiability. Simu-

lated SAR collection methods, including frequency, elevation aspect, and polarization

diversities, are modeled to show reductions in inter-atom correlation. A “molecule”

clustering method is used to combine highly correlated atoms to support a basis pur-

suit (BP) method of feature identification. Finally, a Bayesian approach is used to

determine a maximum a posteriori (MAP) estimate for each atom, leading to fea-

ture classification and parameter identification. This approach lies the foundation for

future research on estimation of a posterior PDF for determining confidence within

classification results.
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Target Classification of Canonical Scatterers Using

Classical Estimation and Dictionary Based Techniques

I. Introduction

1.1 Problem Description

Synthetic aperture radar (SAR) remote sensing provides an all-weather capable

means to collect data sets used to generate high-resolution imagery. The data is com-

prised of electromagnetic scattering returns from scatterers in a scene and includes

both amplitude and phase history. These data sets include target information that,

if extracted, can provide important information for use in automatic target recogni-

tion (ATR) models. Specifically, detection and estimation of features that describe

canonical shape scatterers can be fit to models that describe real-world scenes of in-

terest. These geometric features have been used to create 2-D and 3-D simulations

for computer-aided target identification.

The phase history data used in SAR signal processing has been used in previous

research efforts [1] and [2], for extraction, recognition and classification of canonical

shapes within a target scene of interest. The algorithms proposed in these efforts

rely on classical least squares estimation and non-convex optimization algorithms to

estimate parameters within a signal model. This method proves computationally cum-

bersome and relies on accurate initial shape parameter estimates due to the inherent

multi-modal cost surface. The accuracy of these parameters relies on prior knowledge

of the target scene of interest which is usually not available. Incorrect initialization

may lead to incorrect classification.

In [1], Jackson derives 3-D scattering models for six canonical shapes improving

on the previously utilized 2-D models introduced in [2]. The shapes include a plate,

dihedral, sphere, top-hat, cylinder, and trihedral. The proposed approach in this the-

sis relies on a hierarchical, sparsity-based, dictionary methodology, similar to efforts
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described in [3–7] to extract each of these shapes and associated physical parameters

from a target scene. This method utilizes a set of shape dictionaries which contain

simulated phase histories for various combinations of physical shape and radar collec-

tion parameters. Dictionaries are created for each of the six shape hypotheses using

the 3-D shape models from [1]. A hierarchical approach is used to narrow down atoms

to find each shape and associated parameter set.

The dictionary data are first analyzed to describe possible “confuser” configu-

rations. These confuser parameter combinations are highly correlated and lead to an

over-complete and redundant dictionary. These redundancies lead to misclassifications

when using matching pursuit algorithms such as basis pursuit (BP). A Gram-Matrix

is computed for each of the dictionaries and used to identify redundancies based on

correlations between dictionary columns (atoms). Intensity maps, or “confuser maps,”

are visual representations of these matrices. The confuser shape configurations lead

to poor feature identifiability.

To reduce atom redundancies we characterize the effects of radar collection di-

versity and introduce a clustering method for combining correlated atoms. Simulated

SAR collection methods, including frequency, elevation aspect, and polarization di-

versities, are modeled to show reductions in inter-atom correlation. Also, a method

similar to the molecule method described in [7] is used to cluster atoms to reduce over-

all dictionary coherence. The reduced dictionaries support the use of a BP method of

feature identification. The BP principle has been used in many research efforts and

in the linear programming (LP) world to find optimized solutions in quadratic, non-

convex optimization problems. The BP method is described in detail in [8], [9], and

many others. This clustering method alone reduces the possible number of solution

atoms from several thousand to less than a hundred, in most cases. We then utilize

posterior log-likelihoods and a maximum a posteriori estimation framework to select

the final solution.
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1.2 Research Goals and Methodology

The primary goal of this research effort is to develop a hierarchical, dictionary-

based, canonical shape classification and parameter estimation algorithm framework

utilizing the 3-D radar scattering models presented in [1]. This framework will provide

a baseline for future work aimed at improving extraction efficiency and accuracy over

previous least squares estimation schemes used in [10]. This research will be the first

to use the 3-D scattering models from [1] in a dictionary based feature extraction

scheme. A characterization and identification of confuser configurations amongst

shape hypotheses and parameter combinations is provided as a supporting objective.

Collection methods are also addressed to promote reduction in inter-atom correlations

within the dictionaries. A sparsity-based, basis pursuit de-noising (BPDN) algorithm

is chosen to perform extraction due to inherent efficiency and error tolerance.

Multiple shape dictionaries containing sets of simulated SAR phase history data

are generated for many combinations of shape parameters and radar collection meth-

ods, such as flight profile, polarization, and frequency diversity. Each column within a

dictionary corresponds to a specific set of shape and radar parameters and is referred

to throughout this discussion as an ‘atom’. Each atom is a simulated phase history

data vector that is created using the 3-D signal models described in [1].

Each of the shape dictionaries is over-complete and contains many redundant

atoms which, when normalized, are perfectly correlated. These correlations must

be minimized for accurate feature extraction using sparse reconstruction methods,

as shown in [6, 7]. Each dictionary is reduced by combining redundant atoms into

molecules, or sub-dictionaries, and a BPDN algorithm is used to select the “best”

molecule corresponding to a set of noisy measured data. The spgl1 BPDN opti-

mization algorithm described in [11] is used throughout this research for molecule

identification. The molecule contains many highly correlated atoms. Bayes rule is

used to derive and estimate the posterior log-likelihoods for each of these atoms. The
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atom corresponding to the largest probability is selected and provided as the extracted

shape and parameter set.

1.3 Thesis Organization

Chapter II provides background information applicable to this research. Clas-

sical maximum likelihood (ML) and Bayesian estimation and detection theory is pre-

sented from [12–14]. The algorithms and scattering model equations provided by [1]

and [2] are then presented. Chapter III presents the development and methodol-

ogy of the dictionary based feature extraction algorithm presented in this thesis. A

brief background of dictionary based approaches and optimization schemes for wavelet

matching is presented and a summary of literature regarding these algorithms is in-

cluded. Computational memory requirements and methods for the creation of the

dictionaries are introduced. Chapter IV presents the results of this research. Fi-

nally, Chapter V is a summary of the conclusions made throughout the research, and

provides recommendation for future work.
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II. Background

2.1 Chapter Overview

This chapter presents the background information used to facilitate the un-

derstanding of shape extraction and SAR data modeling. Several key foundational

elements will be discussed. These include classical ML estimation, Bayesian maxi-

mum a posteriori (MAP) estimation and hypothesis testing theory. A discussion of

dictionary approaches and correlation mapping will follow.

The first portion of this chapter will concentrate on building a theoretical foun-

dation for classical and Bayesian estimation and hypothesis testing. Theory will be

presented from [12–14]. Then, we present the 3-D radar scattering models derived by

Jackson in [10].

2.2 Estimation Theory

2.2.1 Classical Estimation. In most situations, a priori knowledge of a

target or scene of interest is not available. In these cases, classical estimation tech-

niques such as ML estimation algorithms are used to find the most likely parameter

estimates. The ML estimation principle is the most popular estimation approach [12].

The ML estimate is defined as the parameter set Θ that maximizes the likelihood

function. Take, for example, a system modeled by

x = s(Θ) + w (2.1)

where s(Θ) represents the signal model data vector based on the parameter set Θ

and w is white Gaussian noise (WGN), w ∼ CN (0, σ2I).

The ML estimate is given by

Θ̂ML = arg max
Θ

p (x|Θ) (2.2)
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where

x|Θ ∼ N (s(Θ),Cx|Θ) (2.3)

and p (x|Θ) represents the multivariate Gaussian PDF [12]

p (x|Θ) =
exp(−1

2
(x− s(Θ))TCx|Θ(x− s(Θ)))

(2π)
N
2 det

1
2 (Cx|Θ)

(2.4)

for anN×1 measured data set x given a parameter set Θ. If the covariance Cx|Θ = σ2I

for variance σ2 and N ×N identity matrix I, we can rewrite the PDF as

p (x|Θ) =
exp(− 1

2σ2 (x− s(Θ))T (x− s(Θ)))

(2π)
N
2 σ2

. (2.5)

For simplicity, we may write (2.5) as the log-likelihood function

ln p (x|Θ) = −N
2

ln(2π)− ln(σ2)− 1

2σ2
(x− s(Θ))T (x− s(Θ)) (2.6)

since the log operation does not change the location of the maximum. The ML

estimate may then be written as

Θ̂ML = arg min
Θ

(x− s(Θ))T (x− s(Θ)) (2.7)

or equivalently as the non-linear least squares (LS) problem

Θ̂LS = arg min
Θ

‖x− s (Θ)‖2
2 (2.8)

where ‖ · ‖2 represents the `2 norm. The LS approach was used in [1] for feature

extraction and parameter estimation.

2.2.2 Bayesian Estimation. A Bayesian MAP technique may be used to

estimate a set of parameters Θ by maximizing the posterior probability over Θ when
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the prior probability p(Θ) is assumed or known. This is shown by

Θ̂MAP = arg max
Θ

p (Θ|x) . (2.9)

Once again, we assume the overall system model can be represented by (2.1).

The parameters in Θ = [Θ1, . . . ,ΘN ]T are each assigned a user-defined prior proba-

bility. These probabilities should be chosen based on any a priori knowledge of the

target scene and user expertise.

Assuming independence between all parameters, the prior probability becomes

p(Θp×1) =
N∏
i=1

p (Θi). (2.10)

Bayes rule can be used to compute the posterior probabilities based on the

conditional probability given by p(x|Θ) and the prior given by (2.10). Bayes rule

states the following relationship:

p(Θ|x) =
p(x|Θ)p(Θ)

p(x)
. (2.11)

To find the MAP estimate of Θ, the numerator of (2.11) must be maximized.

The denominator may be dropped as it does not depend on Θ and will not affect the

position of the maximum. The numerator of (2.11) is simplified and expanded by first

taking the natural logarithm as shown by

ln p (Θ|x) ∝ ln p (x|Θ) +
N∑
i=1

ln p (Θi). (2.12)

Finally, the MAP estimate Θ̂MAP is given by

Θ̂MAP = arg min
Θ

(
‖x− s (Θ)‖2

2 −
N∑
i=1

ln p (Θi)

)
. (2.13)
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2.2.3 Posterior Probability Estimation. Although the MAP estimate Θ̂MAP

may provide the “best” solution for Θ, we may want to associate a probability with

this estimate. This posterior probability may be used as a metric to derive confidence

for the estimate. The posterior, in many cases, may be difficult to compute due to

intractable integration of the denominator p(x).

Using Bayes Rule we identify the posterior probability as

p(Θ|x) =
p(x|Θ)p(Θ)

p(x)
. (2.14)

The denominator in (2.14) is given by

p(x) =

∫
p(x|Θ)p(Θ)dΘ. (2.15)

The final posterior p(Θ|x) is given by

p(Θ|x) =
p(x|Θ)p(Θ)∫
p(x|Θ)p(Θ)dΘ

. (2.16)

Further analysis of (2.16) requires intelligent selection of the prior p(Θ). The

selection of this prior continues to be a topic of high interest in the research commu-

nity. For this research we will introduce, in Chapter 3, a popular selection that has

been proposed for similar extraction efforts. In this thesis, we will only use the MAP

estimator to determine the final solutions. Future work should include the deriva-

tion of p(Θ|x). The decision to use the MAP estimator is supported by the M-ary

hypothesis test derivation shown in the next section.

2.3 Hypothesis Testing and Detection Theory

An M-ary hypotheses test using Bayes criterion is used to make a decision

between M hypotheses. The Bayes criterion assigns risk to each of the alternatives,

assumes a set of a priori probabilities for the parameter set, and attempts to minimize
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the risk. The resulting decision criterion, assuming uniform costs, leads to the MAP

estimator described previously. This derivation is summarized and presented directly

from [13].

The risk is determined by

< =
M−1∑
i=0

M−1∑
j=0

PjCij

∫
zi

pr|Hj
(R|Hj) dR (2.17)

where z is the observation space, R is a point in the observation space, Pj represents

the priori probability for the j th hypothesis, and Cij represents the cost for the ij th

course of action. To find the optimum Bayes test we vary zi to minimize < over all

hypotheses H. The subscript (i) represents each specific hypothesis. For example, if

there are three hypotheses to choose from (M = 3), z = z0 ∪ z1 ∪ z2, the risk

< = P0C00 + P1C11 + P2C22 + I0(R) + I1(R) + I2(R) (2.18)

where,

I0(R) =

∫
z0

[P2(C02 − C22)pr|H2(R|H2)

+ P1(C01 − C11)pr|H1(R|H1)]dR

(2.19)

I1(R) =

∫
z1

[P0(C10 − C00)pr|H0(R|H0)

+ P2(C12 − C22)pr|H2(R|H2)]dR

(2.20)

I2(R) =

∫
z2

[P0(C20 − C00)pr|H0(R|H0)

+ P1(C21 − C11)pr|H1(R|H1)]dR

(2.21)
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The first three terms in < represent fixed costs and the integrands Ii(R) rep-

resent variable costs over zi. If we choose the appropriate points R for each region

zi that minimize each integrand, the minimum risk < is determined by the smallest

integrand. Therefore, appropriate decision rules may be written as,

If I0(R) < I1(R) and I2(R) , choose H0

If I1(R) < I0(R) and I2(R) , choose H1

If I2(R) < I0(R) and I1(R) , choose H2

or equivalently,

I0(R)
H1 or H2

≷
H0 or H2

I1(R) (2.22)

I1(R)
H0 or H2

≷
H0 or H1

I2(R) (2.23)

I0(R)
H1 or H2

≷
H0 or H1

I2(R) (2.24)

By defining likelihood ratios

Λ1 (R) ,
pr|H1 (R|H1)

pr|H0 (R|H0)
(2.25)

Λ2 (R) ,
pr|H2 (R|H2)

pr|H0 (R|H0)
(2.26)

and manipulating (2.19)-(2.24), we have

P1 (C01 − C11) Λ1 (R)
H1 or H2

≷
H0 or H2

P0 (C10 − C00) + P2 (C12 − C02) Λ2 (R) (2.27)

P2 (C02 − C22) Λ2 (R)
H2 or H1

≷
H0 or H1

P0 (C20 − C00) + P1 (C21 − C01) Λ1 (R) (2.28)

P2 (C12 − C22) Λ2 (R)
H2 or H0

≷
H1 or H0

P0 (C20 − C10) + P1 (C21 − C11) Λ1 (R) (2.29)

10



These rules can be simplified by assigning uniform costs, C00 = C11 = C22 = 0

and Cij = 1 for i 6= j. This assumption means that there is no cost for choosing

the correct hypothesis and equal cost for choosing the wrong hypothesis. Using this

assumption and manipulating (2.27)-(2.29), we have

P1pr|H1 (R|H1)
H1 or H2

≷
H0 or H2

P0pr|H0 (R|H0) (2.30)

P2pr|H2 (R|H2)
H2 or H1

≷
H0 or H1

P0pr|H0 (R|H0) (2.31)

P2pr|H2 (R|H2)
H2 or H0

≷
H1 or H0

P1pr|H1 (R|H1) (2.32)

These are equivalent to comparing the posterior probabilities for each hypothesis

and choosing the largest, which is equivalent to the MAP estimate.

2.4 3-D SAR Scattering Models

The least squares estimation approach, described in both [1] and [2], provides a

framework for estimating model parameters and classifying shapes based on collected

SAR phase history data. The results from [1] conclude that shape classification be-

tween several similar shapes proves difficult, due to the inherent multi-modal cost

surface. Incorrect initialization results in incorrect extraction in many cases.

In [1], shapes are distinguished by their associated physical characteristics, de-

scribed by a concise set of parameters. The parameters are represented by Θ =

[X, Y, Z,H, L, r, γ̃, θ̃, φ̃], where X, Y, and Z are the scatterer locations in 3-D carte-

sian space, H is the height of the scatterer, L is the length of the scatterer, r is the

radius of the shape, and γ̃, θ̃, φ̃ are the scatterer’s roll, pitch, and yaw aspect with

respect to the radar.

The six shapes utilized in this research are provided in Figure 2.1 along with

their respective orientations, parameter definitions, and scattering primitives [1].
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(a) Plate (b) Dihedral (c) Sphere

(d) Top-hat (e) Trihedral (f) Cylinder

Figure 2.1: Canonical scattering primitives for target shapes re-used with permission
from [1].

The received radar signal is modeled as a sum of scatterers in both [1, 2]. The

2-D SAR scattering model shown in [2], is given by

s (ω, φ; θ) =
N∑
k=1

Ak

(
j
ω

ωc

)αk
sinc

(ω
c
Lk sin

(
φ− φ̄k

))
e(−ωγk sinφ)

· e(j
ω
c/2

(xk cosφ+yk sinφ))

(2.33)

where the frequency w = 2πf , wc is the center frequency of the radar bandwidth, c

is the speed of light, and φ is the aspect angle. Each of the N scatterers is defined

by the parameter set given by Θ = [x, y, A, α, L, φ, γ], where (x, y) represents the

scattering center location on the (x, y)-plane, A is a relative amplitude, L is the

length of the scattering center, φ̄ is the scatterer’s orientation angle, α characterizes
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frequency dependence of the scattering center, and γ models the aspect dependence

of scattering center cross-section.

This model was modified by Jackson in [1] to include an extended parameter

set for a 3-D space and radar collection parameters Λ. The new model is given by

S (k,Λ; Θ,Γ) =

Q∑
q=1

Pβq (Λ; Θq)MΓq (k,Λ; Θq) e
jk∆R(Λ;Θq) (2.34)

where k , 2πf
c

is the wavenumber for frequency f and speed of light c. We use

Λ = (φt, θt, φr, θr) to represent the scattered signal dependence on transmitter (sub-

script t) and receiver (subscript r) azimuth (φ) and elevation (θ) locations. In

this research we assume a monostatic radar (φt = φr, θt = θr). The shape (Γ =

[plate, dihedral, sphere, top-hat, trihedral, cylinder]) parameter sets are denoted by

the parameter vector Θ. For further details see [10].

The model is parameterized based on each specific shape hypothesis. This in-

creases computational efficiency by eliminating the estimation of nuisance parameters

that are not required for certain shapes. The signal model (2.34) may be represented

by

S (k,Λ; Θ,Γ) =

Q∑
q=1

S (k,Λ; Θq,Γq) (2.35)

for Q scatterers within a target scene. The polarization response Pβ(m) is, in general, a

2×2 matrix that represents the polarization dependence for a specific shape described

by the subscript β(m). Specifically, Pβ is defined by

Pβ(Λ; Θm) =

 P vv
β P vh

β

P hv
β P hh

β

 (2.36)

where the superscripts denote vertical and horizontal receiver and transmitter polar-

izations. For the monostatic case, as described in this research, Pβ(m) is symmetric.
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Each shape is characterized by the number of reflections and is separated into

either an “odd-bounce” or “even-bounce” category. The polarization dependence for

an odd-bounce perfect electrical conductor (PEC) is

Podd =

 −1 0

0 1

 (2.37)

The polarization response for even-bounce scatterers must account for antenna

line of sight (LOS) and the object’s rotation ζ about that LOS. The matrix Peven is

given by

Peven =

 − cos ζ sin ζ

sin ζ cos ζ

 (2.38)

The derivation of ζ is provided in [1].

The next several subsections provide a summary of the scattering response,

MΓq (k,Λ; Θq), for each shape from [1].

2.4.1 Rectangular Plate. The plate is characterized by the parameter set

Θplate = [X, Y, Z,H, L, γ̃, θ̃, φ̃]. The amplitude scale factor is defined as A = LH for

a calibrated radar.

The shape response for the plate is given by

MΓplate
(k,Λ; Θplate) =

jk√
π
A sinc [kL sinφ cos θ]× sinc [kH sin θ] ,

φ ∈
[
−π

2
,
π

2

]
, θ ∈

[
−π

2
,
π

2

] (2.39)

2.4.2 Dihedral. The dihedral has the parameter set

Θdihedral = [X, Y, Z,H, L, γ̃, θ̃, φ̃]. The amplitude scale factor is defined as A = 2LH

for a calibrated radar.
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The shape response for the dihedral is given by

MΓdihedral
(k,Λ; Θdihedral) =

jk√
π
A sinc [kL sinφ cos θ]

×

sin(θ), θ ∈
[
0, π

4

]
cos(θ), θ ∈

[
π
4
, π

2

] , φ ∈ [−π2 , π2 ]
(2.40)

2.4.3 Trihedral. The trihedral has the parameter set

Θtrihedral = [X, Y, Z,H, γ̃, θ̃, φ̃]. The amplitude scale factor is defined as A = 2
√

3H2

for a calibrated radar.

The shape response for the trihedral is given by

MΓtrihedral
(k,Λ; Θtrihedral) =

jk√
π
A×

sin(θ + π
4
− tan−1( 1√

2
)), θ ∈

[
0, tan−1( 1√

2
)
]

cos(θ + π
4
− tan−1( 1√

2
)), θ ∈

[
tan−1( 1√

2
), π

2

]
×

− cos(φ− π
4
), φ ∈

[
−π

4
, 0
]

sin(φ− π
4
), φ ∈

[
0, π

4

]
(2.41)

2.4.4 Cylinder. The cylinder has the parameter set

Θcylinder = [X, Y, Z, L, r, γ̃, θ̃, φ̃]. The amplitude scale factor is defined as A = L
√
r

for a calibrated radar. We assume the cylinder is centered on the y-axis.

The shape response for the cylinder is given by

MΓcylinder
(k,Λ; Θcylinder) =

√
jk

cosφ
A cosφ sinc [kL sinφ cos θ]

φ ∈
[
−π

2
,
π

2

] (2.42)

2.4.5 Tophat. The tophat is a cylinder with a wide circular base that

forms a right angle with the cylinder. The tophat has the parameter set Θtophat =
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[X, Y, Z,H, r, γ̃, θ̃, φ̃]. The amplitude scale factor is defined as A =
√

8r√
2
H for a

calibrated radar.

The shape response for the tophat is given by

MΓtophat
(k,Λ; Θtophat) = A

√
jk ×

sin(θ), θ ∈
[
0, π

4

]
cos(θ), θ ∈

[
π
4
, π

2

] (2.43)

2.4.6 Sphere. The final shape included in this research is the sphere. The

sphere has the parameter set Θsphere = [X, Y, Z, r]. The amplitude scale factor is

defined as A = r for a calibrated radar.

The shape response for the sphere is given by

MΓsphere
(k,Λ; Θsphere) = A

√
π (2.44)

The final piece of the 3-D model is the differential range ∆R.

2.4.7 Differential Range. The differential range term ∆R accounts for the

phase changes caused by the non-zero range extent of an object and the object’s range

from scene center. This range may be written as the sum of the range to the scattering

center location R0 and the range due to non-zero object extent Rr, given by

∆R(Λ(τ); Θm) = ∆R0(Λ(τ); Θm) + ∆Rr(Λ(τ); Θm) (2.45)

These ranges are approximated in [1] as

∆R0(Λ(τ); Θm) ≈ 2x0 cosφ(τ) cos θ(τ) + 2y0 sinφ(τ) cos θ(τ) + 2z0 sin θ(τ) (2.46)

and

∆Rr(Λ(τ); Θm) ≈ 2xr cosφ(τ) cos θ(τ) + 2yr sinφ(τ) cos θ(τ) + 2zr sin θ(τ) (2.47)
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where τ represents time. Further details concerning these derivations are provided

in [1]. The parameters to be estimated for each of the shapes are shown in Table 2.1.

Table 2.1: The parameters to be estimated for each shape.

Shape X Y Z H L r γ̃ θ̃ φ̃
plate x x x x x x x x

dihedral x x x x x x x x
trihedral x x x x x x x x
cylinder x x x x x x x
top-hat x x x x x x x x
sphere x x x x

The derivations of each of the signal models are provided in [1].

In the next chapter, we will utilize the models developed in this section to

build dictionaries of sample data. These dictionaries form the basis for the feature

extraction algorithm proposed in this thesis.
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III. Model Development and Methodology

3.1 Chapter Overview

This chapter presents the development and methodology of the dictionary based

feature classification and parameter estimation algorithm proposed in this thesis. This

algorithm will utilize all of the theory presented in Chapter II.

First, we will step through the creation of the shape dictionaries. Specifically,

we will use the radar signal models developed in [1] to simulate radar phase history

data for many combinations of physical shape parameters. We also describe the

memory requirements and present a generic equation to determine the approximate

size (in bytes) of a dictionary. Second, we will describe the shape classification and

parameter estimation algorithm using the dictionaries. The algorithm requires a

set of non-redundant dictionary columns, or ‘atoms’, to provide accurate solutions.

Therefore, we discuss dictionary analysis used to ensure low redundancy. Third, we

present several techniques to lower overall dictionary coherence. Finally, we discuss

classification and estimation techniques using the reduced dictionaries.

3.2 Dictionary Setup

Each dictionary is populated using the 3-D scattering model given by

S (k,Λ; Θ,Γ) =

Q∑
q=1

Pβq (Λ; Θq)MΓq (k,Λ; Θq) e
jk∆R(Λ;Θq) (3.1)

developed by Jackson in [1] and provided in Section 2.4.

Dictionaries for each shape Γj are populated with data generated using (3.1)

by varying Θ over many combinations of parameters for a specific radar collection

setup Λ. The number of combinations is only limited by available computational

memory and time required for correlation in within signal processor. The changes

in all parameters are based on the range resolution of the radar system of interest.

For example, the location (x, y, z) will be varied by a step-size of at least 0.5m for a
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radar system with a range resolution of 0.5m. Smaller step-sizes lead to undesirable

increases in atom redundancy, limiting atom selection accuracy.

The bulk of the computational requirements for the dictionary approach are

required for the construction and storage of the model dictionaries. The resolution of

the dictionary drives the memory and processing requirements of the system.

Generating the required feature dictionaries requires large amounts of computer

memory, even for a coarsely-sampled parameter space. Each canonical shape response

is represented by four to nine size, location, and orientation parameters depending

on the shape type. The dictionary D contains NT =
∑J

j=1

∏Q
q=1 Ljq atoms, where

Ljq represents the number of samples for the qth parameter in the jth dictionary

parameter vector Θj. In addition, each atom has 2 ·K elements, including both real

and complex values of radar returns associated with multiple frequencies, aspects,

and polarizations. Specifically, K = # azimuths × # polarizations × # frequencies.

Assuming each element is 64 bits or 8 bytes, the memory requirement for each atom

is 16 ·K bytes. Therefore,

memory required = 16 ·K ·
J∑
j=1

Q∏
q=1

Ljq bytes. (3.2)

The shape dictionaries used in this research are comprised of 2K = 113250

element long atoms, each consuming 906 kilo-bytes (KB) of memory. There are six

dictionaries used in the simulations presented, each of which contains 750 or 4500

atoms. The total memory needed to house these dictionaries is almost 18 giga-bytes

(GB).

In the next section we will describe the use of these dictionaries in the proposed

shape classification scheme.
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3.3 Dictionary Based Classification

A dictionary based feature extraction algorithm is a fundamentally different ap-

proach than the estimation techniques in [2, 10]. This section will describe the use

of a dictionary method for classifying measured data with models that cover a wide

variety of parameter sets Θ for multiple shape hypotheses within the set Γ and vari-

ous collection profiles described by Λ. For simplicity, all radar collection parameters,

including the flight profile, frequencies, and polarizations, are combined into the pa-

rameter vector Λ. The non-convex optimization method used in the gradient descent

for a least-squares cost surface optimization proves computationally inefficient when

attempting to minimize the error of a high-dimensional, non-linear model.

As described in Section 3.2, each dictionary is populated with many atoms that

are each comprised of simulated phase history data for a specific set of parameters

S (Λ; Θ,Γj). Each atom is generated using the 3-D SAR scattering models developed

in [1]. The simulated phase histories are columnized, with the real and imaginary

pieces separated and stacked, and stored in a large dictionary matrix DΓj
. Dictionaries

are created for each shape hypothesis Γ.

We denote a dictionary representing the jth canonical shape as a matrix

DΓj
=



Re {S(Λ1; Θ1,Γj)} · · · Re {S(Λ1; ΘN ,Γj)}
...

...
...

Re {S(ΛK ; Θ1,Γj)} · · · Re {S(ΛK ; ΘN ,Γj)}

Im {S(Λ1; Θ1,Γj)} · · · Im {S(Λ1; ΘN ,Γj)}
...

...
...

Im {S(ΛK ; Θ1,Γj)} · · · Im {S(ΛK ; ΘN ,Γj)}


(3.3)

where each column corresponds to an evaluation of the shape model function at one

of N samples of the parameter vector Θ.

3.3.1 Feature Extraction. As described in [10], the feature extraction prob-

lem for a noisy set of radar measurements Y(Λ), may be posed as the least-squares
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problem

min
Θ,Γ
‖Y(Λ)− S(Λ; Θn,Γj)‖2

2 (3.4)

The problem in (3.4) includes model order selection, feature classification, and

parameter estimation. Assuming 2 ·K samples in the measurement vector and model

order M << NT dictionary atoms, we can recast (3.4) as a sparse signal recovery

problem [8,15,16]

min ‖x‖0 s.t.
∥∥Y(Λ)−DΓj

x
∥∥2

2
< ε (3.5)

for coefficients x = [x1, . . . , xNT
]T . By relaxing the `0 norm to the `1 norm, (3.5)

becomes a convex problem [15]

min ‖x‖1 s.t.
∥∥Y(Λ)−DΓj

x
∥∥2

2
< ε (3.6)

Fine sampling of parameters is generally desired to achieve a good representation

of the received signal. In general fine sampling results in an over-complete dictionary

with highly correlated columns. In this problem, high column correlation also occurs

for coarse parameter sampling due to similarity in the scattering response of different

shapes for various parameter choices.

The problem statement provided in (3.6) is known as the basis pursuit de-

noising (BPDN) principle which may be solved by a variety of algorithms. These

algorithms have been shown to produce inaccurate sparse solutions when there is

high inter-column correlation, or inter-atom redundancies [15]. To attempt to reduce

redundancies between parameter combinations we analyze each dictionary over var-

ious Λ. We also explore the use of a “molecule” clustering approach similar to [7],

which groups correlated atoms.

3.3.2 Dictionary Analysis and Reduction. The most fundamental quantity

used to describe a dictionary is coherence [9]. The peak dictionary coherence is defined
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as

µ = max
m 6=n
|〈S(Θm,Γj), S(Θn,Γj)〉| (3.7)

where 〈Sm, Sn〉 ≡ SHmSn is the correlation between dictionary D atoms S(Θm,Γj)

and S(Θn,Γj) [9]. An incoherent dictionary (µ small) is required to meet the re-

stricted isometry property (RIP) needed to find a “good” sparse solution using BP

optimization [7].

The Gram-Matrix G ≡ (D̄T D̄), where D̄ is D with normalized columns, de-

scribes the coherence within D by computing correlation between all combinations

of atoms. We plot G as an intensity map with values in [0, 1], which we refer to as

a correlation map or confuser map. The confuser map visually depicts which fea-

tures are similar and which are identifiable. We present several methods for reducing

inter-atom correlation in the next section.

3.4 Dictionary Reduction

As mentioned previously, many popular dictionary based sparse signal recovery

problems rely on the BP principle. Determining a good sparse approximation using

a redundant dictionary is of combinatorial complexity and even a non-deterministic

polynomial-time hard (NP-hard) problem [6,7].

In this section we step through the correlation reduction process to support

accurate BP optimizations. We will explore the effects of increasing radar collection

diversity, including frequencies, flight profile, and polarizations. We then explore

a modified version of the molecule method described in [7] to minimize dictionary

coherence. For simplicity, confuser maps for only the dihedral dictionary are provided

within this section. Maps for the other five shapes are included in Appendix A. The

correlation reductions will be summarized for all shapes in Table 3.1.

The baseline correlation map, provided in Figure 3.1, is created for the dihedral

dictionary generated with a linear flight profile, a single frequency, and HH polariza-
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tion. This map contains many off-diagonal (inter-column) correlations which imply

coherence within D and violation of the RIP [6].

Figure 3.1: Correlation map corresponding to DΓdihedral
generated using a linear flight

path, HH polarization, and 1 frequency.

3.4.1 Correlation Reduction Through Diversity. We first attempt to reduce

these correlations by exploring the effects of varying radar collection parameters Λ.

We investigate the role of frequency diversity by creating dictionaries for 1 frequency

and 256 frequencies and compare the confuser maps. We also create dictionaries for

linear and non-linear flight paths where the radar elevation is varied. Confuser maps

are then generated for dictionaries containing multiple polarizations. The overarching

hypothesis for the effects of diversity is that greater diversity will reduce inter-atom

correlation and redundancy by increasing resolution of each phase history vector.
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Figure 3.2: Example of non-linear flight path used for simulated SAR data collection.

Greater elevation aspect diversity is simulated by varying the flight elevation

profile for the simulated SAR data collection. The initial collection path utilizes a

constant radar elevation of 30◦. Subsequent data correspond to non-linear flight paths

where azimuth varies linearly and elevation varies along a non-linear path, varying

between 25◦ and 35◦. An example of the non-linear elevation collection path is shown

in Figure 3.2. The increased elevation aspect diversity provides the angular resolution

needed to separate shapes that provide similar scattering responses at specific angles.

Varying the collection angle is the same as changing the pitch of the shape target.

Multiple collection polarizations are also simulated to attempt to lower corre-

lation between similar shape scattering responses. The initial collection is performed

using a HH polarization. Subsequent collections are simulated using HV and VV

polarizations.
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3.4.2 Coherence Reduction Via Molecules. The final method for reducing

inter-atom correlation relies on a clustering method that groups similar atoms to mini-

mize dictionary coherence. High inter-column coherency described by the off-diagonal

intensities within the confuser maps refers to redundant atoms within the dictionaries.

Redundancies may occur due to parameter insensitivity of the scattering models and

may represent very different physical geometries. Nonetheless, the resulting signal

response represented by correlated atoms is non-unique and must be accounted for.

We cluster correlated atoms to create “molecules,” as described in [7]. The collection

of non-redundant atoms and molecules form a new minimized dictionary D̂.

Each molecule may be represented as a sub-dictionary D̂m ∈ D, where the

subscript m represents the molecule index. Each D̂m contains highly-correlated atoms

Ŝ which exceed a user-defined coherence threshold
∣∣∣〈Ŝi, Ŝj〉∣∣∣ ≥ η. Each molecule sub-

dictionary is replaced in the overall dictionary by a single representative atom, given

by the average across the molecule dm = 1
Nm

∑Nm

i=1 Ŝi to form a reduced dictionary D̂.

The new dictionary D̂ is considered minimized once it is no longer reducible,

meaning the off-diagonal correlations in the Gram-Matrix and coherence µ are less

than the user-defined threshold η. This is represented graphically by a diagonalized

confuser map.

The results from each of the coherence reduction steps discussed are presented

in Section 3.5.1 and Section 3.5.2.

3.5 Dictionary Reduction Results

In this section we present the coherence reductions gained by the methods de-

scribed in Section 3.4.

3.5.1 Coherence Reduction Via Diversity. The first reduction step is based

on increasing radar collection diversity. Specifically, we examine the effects of increas-

ing frequency, as well as, aspect and polarization diversity on the overall dictionary

coherence. Frequency diversity is increased by simulating collection data over a range
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of radar frequencies. For this example, we increase the number of collection frequen-

cies from 1 to 125, centered around a center frequency of 10 GHz with a bandwidth

(BW) of 300 MHz, determined by a user specified range resolution of 0.5 m. Aspect

diversity is increased by changing the simulated collection flight path from a linear,

constant 30◦ collection elevation, to a non-linear path where the radar elevation is

30◦ ± 5◦. The non-linear flight path used in all simulations is shown in Figure 3.2.

Finally, the polarization diversity is increased by including HV and VV polarization

responses in the simulated data. The coherence reductions from each of these diversity

increases are shown in Figure 3.3 and summarized in Table 3.1.
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(a) Correlation map corresponding to DΓdihedral

generated using a linear flight path, HH polariza-
tion, and 125 frequencies.

(b) Correlation map corresponding to DΓdihedral

generated using a non-linear flight path, HH po-
larization, and 1 frequency.

(c) Correlation map corresponding to DΓdihedral

generated using a linear flight path, HH, HV, and
VV polarizations, and 125 frequencies.

(d) Correlation map corresponding to DΓdihedral

generated using a non-linear flight path, HH, HV,
and VV polarizations, and 125 frequencies.

Figure 3.3: Reduction in correlation due to increased aspect and frequency diversity
for DΓdihedral

.
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Table 3.1: Coherence reduction results due to increased radar collection diversity.

Coherence
Shape Scenario Peak Mean St. Dev.

plate

Linear path, 1 freq., single pol. 1 0.2441 0.3007
Linear path, 125 freqs., single pol. 1 0.0212 0.1072
Non-linear path, 1 freq., single pol. 0.9993 0.3220 0.2385
Linear path, 125 freqs., multi-pol. 1 0.0212 0.1072
Non-linear path, 125 freqs., multi-pol. 0.9988 0.0282 0.1217

dihedral

Linear path, 1 freq., single pol. 1 0.2437 0.3002
Linear path, 125 freqs., single pol. 1 0.0211 0.1071
Non-linear path, 1 freq., single pol. 1 0.1878 0.1600
Linear path, 125 freqs., multi-pol. 1 0.0211 0.1071
Non-linear path, 125 freqs., multi-pol. 1 0.0194 0.1065

sphere

Linear path, 1 freq., single pol. 1 0.0749 0.1415
Linear path, 125 freqs., single pol. 1 0.0046 0.0277
Non-linear path, 1 freq., single pol. 0.9069 0.0522 0.0628
Linear path, 125 freqs., multi-pol. 1 0.0046 0.0277
Non-linear path, 125 freqs., multi-pol. 0.1344 0.0030 0.0095

top-hat

Linear path, 1 freq., single pol. 1 0.0758 0.1448
Linear path, 125 freqs., single pol. 1 0.0064 0.0395
Non-linear path, 1 freq., single pol. 1 0.0486 0.0536
Linear path, 125 freqs., multi-pol. 1 0.0064 0.0395
Non-linear path, 125 freqs., multi-pol. 1 0.0047 0.0352

trihedral

Linear path, 1 freq., single pol. 1 0.0777 0.1458
Linear path, 125 freqs., single pol. 1 0.0116 0.0851
Non-linear path, 1 freq., single pol. 1 0.0508 0.0860
Linear path, 125 freqs., multi-pol. 1 0.0116 0.0851
Non-linear path, 125 freqs., multi-pol. 1 0.0105 0.0828

cylinder

Linear path, 1 freq., single pol. 0.9962 0.2445 0.2992
Linear path, 125 freqs., single pol. 0.9877 0.0115 0.0577
Non-linear path, 1 freq., single pol. 0.9616 0.1744 0.1506
Linear path, 125 freqs., multi-pol. 0.9877 0.0115 0.0577
Non-linear path, 125 freqs., multi-pol. 0.9556 0.0088 0.0479

These results are dependent on the specified parameter space defined for the

shape locations, RCS, and orientations. These results will also change if the parameter

space resolutions are changed.

Although the overall coherence has been reduced, the Gram-Matrix still includes

many non-negligible off-diagonal values. Therefore, the molecule clustering method
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(a) Correlation map corresponding to DΓdihedral

generated using a non-linear flight path, HH, HV,
and VV polarizations, and 125 frequencies before
clustering.

(b) Correlation map corresponding to DΓdihedral

generated using a non-linear flight path, HH, HV,
and VV polarizations, and 125 frequencies after
implementing molecule method.

Figure 3.4: Reduction in correlation due to molecule clustering algorithm.

introduced and described in [7] is implemented as a hierarchical approach for further

reduction.

3.5.2 Coherence Reduction Via Molecules. The dictionary’s coherence is

minimized when the Gram-Matrix has been diagonalized. As seen in Figure 3.3(d),

the confuser map still includes many off-diagonal components. These off-diagonal

correlations represent atom redundancy. The clustering method described in [7] com-

bines redundant atoms based on a user defined coherence threshold η and replaces

them with a representative atom. In our case, this atom is the sample mean of the

redundant atoms. The final reduced dictionary should contain only non-redundant

atoms (
∣∣∣〈Ŝi, Ŝj〉∣∣∣ < η).

For this discussion we set the coherence threshold to η = 0.2. The resulting

reduction in coherence and dictionary size is shown in Figure 3.4 and summarized in

Table 3.2.

The dictionary has now been minimized, as shown by the diagonalized Gram-

Matrix in Figure 3.4(b). The total size of DΓdihedral
has also been reduced from 4500
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Table 3.2: Coherence reduction results for molecule cluster method.

Coherence
Shape Scenario Peak Mean St. Dev.

plate
Non-linear, 125 freqs, multi-pol 0.9988 0.0282 0.1217
Non-linear, 125 freqs, multi-pol, clustered 0.2620 0.0158 0.0396

dihedral
Non-linear, 125 freqs, multi-pol 1 0.0194 0.1065
Non-linear, 125 freqs, multi-pol, clustered 0.0642 0.0060 0.0091

sphere
Non-linear, 125 freqs, multi-pol 0.1344 0.0030 0.0095
Non-linear, 125 freqs, multi-pol, clustered 0.1344 0.0030 0.0095

top-hat
Non-linear, 125 freqs, multi-pol 1 0.0047 0.0352
Non-linear, 125 freqs, multi-pol, clustered 0.1402 0.0036 0.0118

trihedral
Non-linear, 125 freqs, multi-pol 1 0.0105 0.0828
Non-linear, 125 freqs, multi-pol, clustered 0.1548 0.0039 0.0166

cylinder
Non-linear, 125 freqs, multi-pol 0.9556 0.0088 0.0479
Non-linear, 125 freqs, multi-pol, clustered 0.9556 0.0092 0.0406

atoms to 50 molecules, each of which containing 70 to 100 atoms. The BP algorithm

may now be implemented on the reduced dictionary D̂Γdihedral
.

3.5.3 Coherence Reduction Summary. From Tables 3.1 and 3.2 we can

make several observations concerning shape responses and atom redundancy. The

greatest reductions in inter-column correlations prior to clustering are due to increas-

ing frequency and aspect diversity. Increasing polarization diversity alone did not

change single shape dictionary coherence. However, polarization diversity may re-

duce coherence in dictionaries containing multiple shapes. For this research we use

data simulated utilizing all three polarizations (HH, HV, VV) to support separation

between shape dictionaries when performing the classification and estimation steps.

All shape confuser matrices, with the exception of the sphere, contain large off-

diagonal correlations prior to clustering, shown by the large peak coherency listed in

Table 3.1. All shape dictionaries were successfully minimized (diagonalized confuser

map) after implementation of the molecule clustering method, except for the cylinder

and sphere dictionaries. The sphere dictionary was already minimized due to the

increased frequency and aspect diversities. The clustering method used for each of the

other shapes did not minimize the cylinder dictionary. Further investigation shows
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(a) Correlation map corresponding to DΓcylinder

generated using a non-linear flight path, HH, HV,
and VV polarizations, 125 frequencies, and origi-
nal clustering method.

(b) Correlation map corresponding to DΓcylinder

generated using a non-linear flight path, HH, HV,
and VV polarizations, 125 frequencies, and modi-
fied clustering method.

Figure 3.5: Reduction in correlation due to modified molecule clustering algorithm
for dihedral dictionary.

that the representative atoms for the cylinder dictionary, created using the means

of each molecule, become highly correlated with each other; therefore, negating the

successful minimization of previous correlations. This result may be due to several

reasons, including model similarities and radial parameter insensitivity. The sphere

may have led to the same results if the sphere dictionary had not been fully reduced

from increased diversity.

A modified clustering method is implemented to alleviate this issue. This

method simply replaces the mean representative atom with the atom correspond-

ing to the current molecule index. As shown in Figure 3.5, this modified method

successfully minimizes the off-diagonal correlations.

This method also works for minimizing the other dictionaries. The method

improves estimation for the cylinder, but simulations show that the modified method

leads to incorrect shape classifications and parameter estimations with the other five

shapes.
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The BP algorithm determines an appropriate coefficient vector ψ for each re-

duced dictionary D̂. This vector identifies the molecule for each shape that contains

the most representative data. This solution is still ambiguous since the correct atom

could be any one of the atoms contained within any of the selected molecules for any

shape. The BP principle cannot be used to select the final solution, since it relies on

low inter-atom correlation. Instead, log-likelihoods for the posterior probabilities of

each of the atoms within each molecule are calculated and used to choose the most

representative atom. This process is described in further detail in the next section.

3.6 Feature Classification Using Reduced Dictionary

Shape classification and parameter estimation is accomplished using the reduced

shape dictionaries. The first step involves selecting the appropriate molecule contained

within D̂ that contains the most representative data. This step relies on the BP

principle. The second step uses Bayes rule to derive and compute posterior log-

likelihoods for each atom within the selected molecule. The atom corresponding

to the largest log-likelihood is selected as the solution along with its corresponding

parameter set. An overview of the algorithm proposed is provided in Figure 3.6.
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Figure 3.6: Overview of main algorithm.

3.6.1 Molecule Selection via Basis Pursuit. Once the dictionary has been

reduced to D̂, the BP principle is used to estimate the molecule D̂m or set of molecules

D̂1, . . . , D̂M ∈ D̂ that best represent the noisy phase history measurement signal

Y(Λ).
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Specifically, a Matlab R© based algorithm called spgl1 [11] is used to solve the

BPDN problem

min ‖ψ‖1 s.t.
∥∥∥Y(Λ)− D̂Γj

ψ
∥∥∥2

2
< ε (3.8)

where ‖ · ‖1 represents the `1 norm and the coefficient vector ψP×1 identifies the

molecules that form the sparsest representation of Y(Λ). The spgl1 algorithm reduces

this problem to a linear program and solves using a spectral projected-gradient (SPG)

algorithm. This SPG algorithm is described in detail in [11].

The output of this algorithm is a set of six coefficient vectors ψ each corre-

sponding to a shape dictionary. Each of these vectors contains widely varying levels

of sparseness and maximum values. The desired solution to the BP optimization

corresponds to the sparsest vector containing the largest coefficient. However, many

of the coefficients greatly exceed the optimum value of 1. Therefore, a user defined

sparsity constraint λ along with a user defined coefficient ceiling α are used to select

the appropriate solution vector. Specifically, the shape of the scatterer is classified

by,

max
Γ

(max(ψ)− λ · ‖ψ‖1) s.t. 0 ≤ max(ψ) ≤ α (3.9)

which provides the index to the appropriate shape dictionary. The method of using a

sparsity constraint λ and associated `1 norms is derived from the regularized LS cost

function used in [6] and the `1-regularized formulation in [17,18].

The index of the maximum coefficient in the selected ψ is then used to identify

the molecule D̂m containing the most representative data. Section 3.6.2 describes the

process of determining the index pertaining to the solution atom within the selected

D̂m.

3.6.2 Atom Selection via Probability. The BP selected molecule D̂m contains

highly correlated atoms,
∣∣∣〈Ŝi, Ŝj〉∣∣∣ ≥ η. For this research, where η = 0.2, these

correlations are greater than 0.2. The BP algorithm requires a set of non-redundant,

or uncorrelated atoms to accurately estimate the sparsest solution ψm [7].
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Therefore, Bayes rule is used instead to derive an estimate via the posterior

log-likelihoods ln p(ψm|Y) for each atom for the system described by,

Y =
∑
m

D̂mψm + w (3.10)

where

w ∼ N (0, σ2I) (3.11)

The selected N × p matrix molecule is D̂m and ψm is the coefficient vector pertaining

to that molecule indexed by m.

The conditional probability on measured data Y is given by

p(Y|ψm) =
exp(− 1

2σ2 Q)

(2π)N/2σ2
(3.12)

where Q = (Y − D̂mψm)T (Y − D̂mψm). Using Bayes rule we identify the posterior

probability as

p(ψm|Y) =
p(Y|ψm)p(ψm)

p(Y)
(3.13)

The denominator in (3.13) is given by,

p(Y) =

∫
p(Y|ψm)p(ψm)dψm (3.14)

The integral in (3.14) may become intractable depending on the selection of p(ψm)

as described in [18]. The numerical evaluation or approximation of p(Y) utilizing the

hierarchical prior derived in [18] is a future goal for this research. For now, we will only

present a MAP estimate for ψm. Therefore, we consider the posterior log-likelihood

given by

ln p(ψm|Y) ∝ − 1

2σ2
Q + ln p(ψm) + const. (3.15)

For simplicity, we assume uniform costs C00 = C11 = 0, C10 = C01 = 1 and equal

prior probabilities, p(ψ1) = p(ψ2) = . . . = p(ψM) and p(ψm) = 1
# of atoms within molecule

=
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1
M

. These assumptions reduce (3.15) to

ln p(ψm|Y) ∝ − 1

2σ2
Q + const. (3.16)

The ML estimate is given by

ψ̂m = arg max
ψm

(−(Y − D̂mψm)T (Y − D̂mψm)) (3.17)

For this specific case of uniform priors the MAP estimate is equal to the ML

estimate. Referring back to the Bayes M-ary detection criteria derived in Section 2.3,

we select ψ̂m as the index for classification and the solution parameter set.

3.6.3 Multiple Shapes. The previous steps discussed in Section 3.6.1 and

Section 3.6.2 work well for scenes containing only a single shape. To extract multiple

features from a scene, a modification must be made to the algorithm.

An iterative phase history subtraction process is used to separate shapes from

the measured data. The BP and probability methods will always extract the one

feature in the scene that contributes the most significant radar scattering return.

Once this feature is identified, the corresponding phase history within the appropriate

dictionary is subtracted from the measured data. This method is applicable in the

radar case since the scattering return from a scene is modeled as the sum of scatterers

within the scene, given by

S (k,Λ; Θ,Γ) =

Q∑
q=1

Pβq (Λ; Θq)MΓq (k,Λ; Θq) e
jk∆R(Λ;Θq) (3.18)

Once the extracted return is subtracted, the variance of the remaining measured

data is used to determine whether all shapes within the scene have been accounted

for. Specifically, the variance of the new data is compared to the variance of the

previous data. If the variance has decreased, the extraction algorithm is repeated for
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the new set of data. Otherwise, the extraction is halted and the previous extraction

results are presented.
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IV. Results

4.1 Chapter Overview

This chapter presents the results for the extraction steps presented in Chap-

ter III. Three scenarios are set up to test the algorithm. The first scenario provides

a baseline test. Feature extraction and parameter estimation are applied to a target

scene containing a single shape, which directly corresponds to an atom within a dic-

tionary. The second scenario tests the algorithm against target scenes comprised of a

single shape with parameters outside of the defined dictionary parameter space. We

will methodically step through each location and RCS parameter to present the level

of instability for each parameter. The final scenario tests the algorithm’s ability to ex-

tract and estimate parameters for multiple shapes within a target scene. Specifically,

this will test the algorithm’s iterative phase history subtraction process. The scenes

will be comprised of three shapes of various combinations, each of which will directly

correspond to a dictionary atom. We will conclude this chapter with a comprehensive

results section. This section presents results of multiple Monte Carlo simulations used

to characterize the effects of RCS and signal-to-noise ratio (SNR) on the algorithm.

All target scenes are generated using 125 frequencies, HH, HV, and VV polarizations,

and the non-linear flight path, shown in Figure 3.2.

4.2 Scenario 1 Results

In the first scenario, we attempt to extract a single canonical shape from a

target scene. We will present only the dihedral and cylinder scenes as examples in

this section. The results for the other 4 shapes are provided in Appendix B. For

the cylinder scene example we will present the results from both molecule clustering

methods. All other shapes rely on only the original clustering method, which replaces

correlated atoms with a single representative atom equivalent to the mean of the

grouped atoms within each molecule.
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4.2.1 Dihedral Target. The dihedral target scene is simulated using atom

2473 from the dihedral dictionary. Random WGN is added to the dictionary atom

to create the set of simulated measured data with an SNR of 30 dB. The specific

parameters used to create the dihedral are shown in Table 4.1. The atom and molecule

Table 4.1: The parameters used to create the dihedral for scenario 1.

Shape X Y Z H L r γ̃ θ̃ φ̃
dihedral 0 10 5 2 1 - 0 0 0

correspondences are provided in Table 4.2. Note that the “Molecule Atom” refers to

the atom index within the molecule. The indexes are redefined within each molecule.

Table 4.2: Atom correspondence for measured shape.

Shape Orig. Dict. Atom Molecule Molecule Atom
dihedral 2473 33 60

The BP algorithm described in Section 3.6.1 is used to search through each of

the reduced shape dictionaries to identify the correct molecule which contains the best

representation of the measured data. The six resulting coefficient plots, separated by

shape, are provided in Figure 4.1.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure 4.1: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 1, dihedral example.
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The shape is classified based on the largest coefficient value and a user defined

sparsity constraint, λ = 0.2. The maximum coefficient returned by the BP algorithm

for each of the shape dictionaries and the sparsities, described by ‖ψ‖1, are provided

in Table 4.3. The sparsest solution that corresponds to the maximum coefficient ψ̂,

Table 4.3: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor).

Shape max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)
plate 0.0018 0.0348 -0.0052

dihedral 0.8172 0.8910 0.6390
sphere 0.1205 11.2907 -2.1376
top-hat 0.1689 4.2640 -0.6839

trihedral 1.4897× 10−4 0.0065 -0.0011
cylinder 0.0516 2.8059 -0.5096

falling between the values of 0 and α is chosen. For the examples presented in this

research, α is set to 3. This value is chosen to allow some variance around the optimum

value of 1 due to added noise. Specifically, the shape dictionary D̂ is chosen by

max (max(ψ)− λ · ‖ψ‖1) s.t. 0 ≤ max(ψ) ≤ 3 (4.1)

This method correctly leads to a dihedral classification. The dihedral dictio-

nary molecule corresponding to the largest coefficient within ψ is chosen as the “sub-

dictionary” used for parameter estimation via the MAP estimator. The largest coef-

ficient correctly corresponds to molecule 33.

Estimates of the posterior log-likelihoods are calculated for each atom within

this molecule. These estimates are plotted and provided in Figure 4.2. The largest

log-likelihood corresponds to the correct atom (atom 60) as shown by the associated

parameters provided in Table 4.4. The algorithm successfully chose the correct feature

and parameters for the dihedral scene.

4.2.2 Cylinder Target. In this example, we present two sets of results from

the target scene containing a single cylinder. The first set of results is achieved using
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Figure 4.2: Posterior log-likelihood estimates associated with each atom within the
selected dihedral molecule (True Atom = 60).

the reduced cylinder dictionary created using the original molecule method. The

second set of results is achieved using the second reduced cylinder dictionary created

using the modified molecule method.

The cylinder within the target scene corresponds to atom 10 from the cylinder

dictionary. Again, we add WGN to the atom to achieve a measured SNR of 30 dB.

The specific parameters used to create the cylinder are shown in Table 4.5. The atom

and molecule correspondences are provided in Table 4.6.

Table 4.4: Estimated versus true parameters for scenario 1, dihedral example.

Shape X Y Z H L r γ̃ θ̃ φ̃
True dihedral 0 10 5 2 1 - 0 0 0

Estimated dihedral 0 10 5 2 1 - 0 0 0
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Table 4.5: Parameters used to create the cylinder for scenario 1.

Shape X Y Z H L r γ̃ θ̃ φ̃
cylinder 10 -5 -10 - 0.5 0.5 0 0 0

Table 4.6: Atom correspondence for measured shape.

Shape Orig. Dict. Atom Molecule Molecule Atom
cylinder 10 10 1

In the first attempt for extraction and parameter estimation, we use the reduced

cylinder dictionary, created using the mean atom replacements in the original molecule

grouping algorithm. The BP and log-likelihood plots for the extraction attempt using

the original reduced cylinder dictionary are provided in Figure 4.3 and Figure 4.5.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary (original molecule clustering).

(f) BP result using the reduced top-hat dictionary.

Figure 4.3: BP results for each of the reduced shape dictionaries used in the feature
extraction problem for the cylinder target scene in scenario 1. The reduced
cylinder dictionary used for these results is generated using the original
molecule method.
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The shape is classified based on the largest coefficient value and the user defined

sparsity constraint. The maximum coefficient returned by the BP algorithm for each of

the shape dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table 4.7.

Table 4.7: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 1, cylinder example 1, using original
molecule method.

Shape max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)
plate 8.2595× 10−4 0.0176 -0.0027

dihedral 2.5545× 10−5 6.8228× 10−4 −1.1091× 10−4

sphere 0.5220 2.4421 0.0336
top-hat 8.7002× 10−5 0.0143 -0.0028

trihedral 8.7963× 10−5 0.0012 −1.5810× 10−4

cylinder 0.4779 0.9161 0.2910

The sparsities and coefficients provided in Table 4.7 correctly lead to a cylinder

classification. However, a zoomed-in version of the cylinder BP coefficient plot, shown

in Figure 4.4, reveals that the largest coefficient corresponds to molecule 7 instead

of the correct molecule 10. Therefore, the atom corresponding to the largest log-

likelihood, shown in Figure 4.5, does not correspond to the correct cylinder parameter

set, leading to incorrect parameter estimation, shown in Table 4.8.

Table 4.8: Estimated versus true parameters for scenario 1 using original reduced
cylinder dictionary.

Shape X Y Z H L r γ̃ θ̃ φ̃
True cylinder 10 -5 -10 - 0.5 0.5 0 0 0

Estimated cylinder -5 -5 -10 - 0.5 0.5 0 0 0

In the next attempt, we use the reduced cylinder dictionary, created using the

modified molecule algorithm. This method minimizes all of the off-diagonal correla-

tions within the cylinder dictionary, which the original method failed to accomplish.

The BP and log-likelihood plots are provided in Figure 4.6 and Figure 4.8.
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Figure 4.4: Zoomed in BP result for the reduced cylinder dictionary created using the
original molecule method.
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Figure 4.5: Posterior log-likelihood estimates associated with each atom within the
selected cylinder molecule.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary (modified molecule clustering).

(f) BP result using the reduced top-hat dictionary.

Figure 4.6: BP results for each of the reduced shape dictionaries used in the feature
extraction problem for the cylinder target scene in scenario 1. The reduced
cylinder dictionary used for these results is generated using the modified
molecule method.
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The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table 4.9.

Table 4.9: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 1, cylinder example 2, using modified
molecule method.

Shape max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)
plate 8.2595× 10−4 0.0176 -0.0027

dihedral 2.5545× 10−5 6.8228× 10−4 −1.1091× 10−4

sphere 0.5220 2.4421 0.0336
top-hat 8.7002× 10−5 0.0143 -0.0028

trihedral 8.7963× 10−5 0.0012 −1.5810× 10−4

cylinder 1.0000 1.0581 0.7884

Again, the sparsities and coefficients provided in Table 4.9 correctly lead to

a cylinder classification. The zoomed-in version of the cylinder BP coefficient plot,

shown in Figure 4.7, reveals that the largest coefficient corresponds to the correct

molecule (molecule 10). The atom corresponding to the largest log-likelihood, shown

in Figure 4.8, corresponds to the correct cylinder parameter set, leading to correct

parameter estimation, shown in Table 4.10.

Table 4.10: Estimated versus true parameters for scenario 1 using modified reduced
cylinder dictionary.

Shape X Y Z H L r γ̃ θ̃ φ̃
True cylinder 10 -5 -10 - 0.5 0.5 0 0 0

Estimated cylinder 10 -5 -10 - 0.5 0.5 0 0 0

Based on these results, we use only the modified reduced dictionary for the

cylinder for all other scenarios. This method was attempted with all other shapes, but

led to incorrect classifications. Therefore, all other shapes utilize the original reduced

dictionaries. The next scenario will test the ability of the algorithm to estimate shape

configurations that do not directly correspond to a specific atom.
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Figure 4.7: Zoomed in BP result for the reduced cylinder dictionary created using the
modified molecule method.

4.3 Scenario 2 Results

The target scenes used in scenario 2 contain only a single shape, as in scenario

1; however, each shape corresponds to a parameter set that does not directly relate to

a specific dictionary atom. For each of the six shapes we will choose one parameter at

a time to fall between two atoms. We will step through each of the variable param-

eters (Θ = [x, y, z,H, L, r]), each time holding all other parameters to a dictionary

contained set. This approach methodically identifies the parameters for each shape

that lead to misclassifications when not directly represented within a dictionary.

In this section we present only the results for the plate target example with

five variations of parameters. The results for the other five shapes are contained in

Appendix C.
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Figure 4.8: Posterior log-likelihood estimates associated with each atom within the
selected cylinder molecule.

4.3.1 X Parameter. In the first example, we generate a plate target located

at x = 4 m with an SNR of 30 dB. The dictionary parameter space used for the location

parameters x, y, z is defined from -10 m to 10 m at 5 m increments. Therefore, the

location used does not correspond directly to a dictionary entry. The plate target is

simulated using the parameters listed in Table 4.11.

Table 4.11: The parameters used to create the plate target for scenario 2, example 1.

Shape X Y Z H L r γ̃ θ̃ φ̃
plate 4 0 0 2 1 - 0 -30 0

Once again, the extraction and estimation algorithm is implemented on the

target scene. The BP results for each shape are provided in Figure 4.9.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure 4.9: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 2, plate example 1.
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The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table 4.12. This

Table 4.12: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, plate example 1.

Shape max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)
plate 0.1789 0.6361 0.0517

dihedral 0.0014 0.0301 -0.0046
sphere 1.4350 25.2137 -3.6077
top-hat 0.0058 0.7022 -0.1347

trihedral 2.0788× 10−4 0.0130 -0.0024
cylinder 0.8354 15.7779 -2.3202

method correctly leads to a plate classification. However, the algorithm incorrectly

estimates both the size and location parameters, as shown in Table 4.13.

Table 4.13: Estimated versus true parameters for scenario 2, plate example 1.

Shape X Y Z H L r γ̃ θ̃ φ̃
True plate 4 0 0 2 1 - 0 -30 0

Expected plate 5 0 0 2 1 - 0 -30 0
Estimated plate 10 5 -10 3 0.5 - 0 -30 0

Initially, we make the hypothesis that the parameter set extracted should be the

closest dictionary contained representative parameter set, Θ = [5, 0, 0, 2, 1, 0, 0,−30, 0]

(atom 2439). Although this atom seems closer, the range profile provided in Fig-

ure 4.10 shows that the extracted parameter set, Θ = [10, 5,−10, 3, 0.5, 0, 0,−30, 0]

(atom 3770) is more representative in the range, or X, dimension. This range error

may have led to a larger LS error and the incorrect parameter set estimation. The

LS errors given by ‖x− s(Θn)‖2
2, for n = [3770, 2439] are provided in Table 4.14. The

Table 4.14: LS errors for the extracted and hypothesized data sets for scenario 2,
plate example 1.

Data ‖x− s(Θn)‖2
2

Extracted 3.9014× 107

Closest 7.4880× 107

minimum LS error is equivalent to the MAP estimate, as described in Chapter II.
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Figure 4.10: Range profile for the true, extracted, and close simulated plate targets.
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4.3.2 Y Parameter. In this example, we generate a plate target located at y

= 4 m with an SNR of 30 dB. Again, this location falls outside of the parameter space

defined for the dictionary. We set the other parameters within the defined dictionary

sample space. The plate target is simulated using the parameters listed in Table 4.15.

Table 4.15: The parameters used to create the plate target for scenario 2, example 2.

Shape X Y Z H L r γ̃ θ̃ φ̃
plate 0 4 0 2 1 - 0 -30 0

The BP results for each shape are provided in Figure 4.11.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure 4.11: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 2, example 2.
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The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table 4.16.

Table 4.16: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, plate example 2.

Shape max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)
plate 0.6194 0.8139 0.4566

dihedral 0.0019 0.0351 -0.0051
sphere 0.3602 29.0131 -5.4425
top-hat 0.0041 0.7111 -0.1381

trihedral 4.4132× 10−4 0.0213 -0.0038
cylinder 1.0592 19.2665 -2.7941

This method correctly leads to a plate classification. The algorithm incorrectly

estimates the y location parameter, but correctly estimates all other parameters, as

shown in Table 4.17. The log-likelihood plot for the molecule selected is provided in

Table 4.17: Estimated versus true parameters for scenario 2, plate example 2.

Shape X Y Z H L r γ̃ θ̃ φ̃
True plate 0 4 0 2 1 - 0 -30 0

Expected plate 0 5 0 2 1 - 0 -30 0
Estimated plate 0 -5 0 2 1 - 0 -30 0

Figure 4.12. Initially, we assume that the algorithm should choose the plate corre-

sponding to the closest parameter set. Therefore, the expected parameter set would

be Θ = [0, 5, 0, 2, 1, 0, 0,−30, 0]. This set corresponds to atom 40 within the molecule

depicted in Figure 4.12. The extracted parameter set corresponds to atom 39. Again,

the difference in likelihoods are due to a lower LS error between the extracted data

and the measured data. The total LS errors given by ‖x − s(Θn)‖2
2, for n = [39, 40]

are provided in Table 4.18. The lowest LS error corresponds to the extracted data

set and is equivalent to the largest log-likelihood. Next, we will repeat this process

for the z parameter.
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Figure 4.12: Posterior log-likelihood estimates associated with each atom within the
selected plate molecule.

4.3.3 Z Parameter. In this example, we generate a plate target located at

z = 4 m with an SNR of 30 dB. The plate target is simulated using the parameters

listed in Table 4.19. The BP results for each shape are provided in Figure 4.13.

Table 4.18: LS errors for the extracted and hypothesized data sets for scenario 2,
plate example 2.

Data ‖x− s(Θn)‖2
2

Extracted 2.5269× 107

Closest 2.7067× 107
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Table 4.19: The parameters used to create the plate target for scenario 2, example 3.

Shape X Y Z H L r γ̃ θ̃ φ̃
plate 0 0 4 2 1 - 0 -30 0
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure 4.13: BP results for the first iteration for each of the reduced shape dictionaries
used in the feature extraction problem in scenario 2, plate example 3.
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The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table 4.20.

Table 4.20: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, plate example 3.

Shape max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)
plate 0.1021 0.9386 -0.0856

dihedral 0.0015 0.0300 -0.0046
sphere 0.7549 25.5425 -4.3536
top-hat 0.0042 0.6946 -0.1347
trihedral 0.0030 0.0170 −3.5957× 10−4

cylinder 1.6443 20.2092 -2.3975

This method incorrectly classifies the shape as a trihedral. The associated ex-

tracted parameter set is provided in Table 4.21. This misclassification is due to the

Table 4.21: Estimated versus true parameters for scenario 2, plate example 3.

Shape X Y Z H L r γ̃ θ̃ φ̃
True plate 0 0 4 2 1 - 0 -30 0

Expected plate 0 0 5 2 1 - 0 -30 0
Estimated trihedral 5 5 -5 0.5 - - 0 0 0

low sparsity value of the trihedral. This may be mitigated by separating shapes based

on some threshold on max(ψ). Once separated, (max(ψ) − λ · ‖ψ‖1) could then be

compared for each of the separated shapes. For example, if the threshold was set to

0.1, the plate, sphere and cylinder would be extracted for comparison. In this case,

the comparison would lead to a correct classification. Many of the results for the other

shape examples misclassify as a trihedral because of this and mitigation techniques

should be explored in future research.

The total LS errors for the extracted data versus the hypothesized closest data

are provided in Table 4.22.

4.3.4 RCS Parameters. In this section we discuss the results of two example

target scenes. Each of the scenes includes a plate that is generated using a length or
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Table 4.22: LS errors for the extracted and hypothesized data sets for scenario 2,
plate example 3.

Data ‖x− s(Θn)‖2
2

Extracted 1.0110× 108

Closest 7.4781× 107

height parameter that falls outside of the dictionary parameter space resolution with

an SNR of 30 dB. The dictionary parameter space used for the RCS parameters L,

H, r is defined based on a 0.5 m resolution. The plate targets are simulated using the

parameters listed in Table 4.23.

Table 4.23: The parameters used to create the plate target for scenario 2, examples
4 and 5.

Shape X Y Z H L r γ̃ θ̃ φ̃
plate 1 0 0 0 2.3 1 - 0 -30 0
plate 2 0 0 0 2 1.3 - 0 -30 0

The BP results for each shape are provided in Figure 4.14 and Figure 4.15.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced tophat dictionary.

Figure 4.14: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 2, plate example 4.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced tophat dictionary.

Figure 4.15: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 2, plate example 5.
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The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table 4.24 and

Table 4.25.

Table 4.24: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, plate example 4.

Shape max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)
plate 0.7707 0.8360 0.6035

dihedral 0.0020 0.0330 -0.0046
sphere 0.6326 35.4801 -6.4634
top-hat 0.0054 0.8308 -0.1607

trihedral 3.5983× 10−4 0.0240 -0.0044
cylinder 0.9808 21.3668 -3.2926

Table 4.25: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, plate example 5.

Shape max(ψ) ‖ψ‖1 (ψ − λ · ‖ψ‖1)
plate 0.9311 1.0427 0.7226

dihedral 0.0020 0.0334 -0.0047
sphere 0.7985 39.0755 -7.0166
top-hat 0.0048 0.9180 -0.1788

trihedral 5.5256× 10−4 0.0310 -0.0056
cylinder 1.1251 23.6112 -3.5972

For both examples, the shape is correctly classified as a plate. The expected pa-

rameter set estimations are Θ = [0, 0, 0, 2.5, 1, 0, 0,−30, 0] and Θ = [0, 0, 0, 2, 1.5, 0, 0,−30, 0],

since these are the closest defined sets. The algorithm successfully estimates the ex-

pected parameter sets in both examples, as shown in Table 4.26 and Table 4.27.

Table 4.26: Estimated versus true parameters for scenario 2, plate example 4.

Shape X Y Z H L r γ̃ θ̃ φ̃
True plate 0 0 0 2.3 1 - 0 -30 0

Expected plate 0 0 0 2.5 1 - 0 -30 0
Estimated plate 0 0 0 2.5 1 - 0 -30 0

Although the algorithm extracts expected parameter sets for the L and H RCS

parameters for the plate. It fails when attempting to extract the radius parameter
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Table 4.27: Estimated versus true parameters for scenario 2, plate example 5.

Shape X Y Z H L r γ̃ θ̃ φ̃
True plate 0 0 0 2 1.3 - 0 -30 0

Expected plate 0 0 0 2 1.5 - 0 -30 0
Estimated plate 0 0 0 2 1.5 - 0 -30 0

r for the sphere, top-hat and cylinder shapes and has mixed results for the L and H

parameters for the other shapes. The results from each of these shapes are included

in Appendix C.

4.4 Scenario 3 Results

This section will discuss the extraction and classification results for target scenes

containing multiple targets. Each of the targets directly corresponds to a dictionary

atom. For simplicity, we present only the results for a target scene containing a plate,

dihedral, and top-hat. The results from two other scenes that include combinations

of the other shapes, are included in Appendix D. The parameters selected for each

shape in this example are given in Table 4.28. The measured data is simulated with

Table 4.28: The parameters used to create scene 3, example 1.

Shape X Y Z H L r γ̃ θ̃ φ̃
plate 10 0 0 1 1 - 0 -30 0

dihedral 0 10 5 2 1 - 0 0 0
top-hat -10 5 0 3 - 1 0 0 0

an SNR of 30 dB. Each of the shapes correspond to atoms within their respective

shape dictionaries. This correspondence is provided in Table 4.29.

Table 4.29: Correspondence mapping for the measured data and dictionary atoms for
scenario 3, example 1.

Shape Orig. Dict. Atom Molecule Molecule Atom
plate 940 25 23

dihedral 2473 33 60
top-hat 1441 191 6
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The iterative phase history subtraction process leads to multiple iterations of

the BP algorithm when extracting multiple shapes from a target scene. A single shape

corresponding to the largest contribution of energy in extracted from each iteration.

The BP results for each shape and iteration are provided in Figures 4.16-4.18.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure 4.16: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 3, example 1 on the first iteration.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure 4.17: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 3, example 1 on the second iteration.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure 4.18: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 3, example 1 on the final iteration.
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The maximum coefficients along with the calculated norms for each iteration

are shown in Table 4.30.

Table 4.30: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 3, example 1.

Shape Iteration max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)

plate
1 0.4396 0.6037 0.3189
2 0.4396 0.6037 0.3189
3 0.4396 0.6037 0.3189

dihedral
1 0.8149 0.9083 0.6333
2 0.0076 0.0651 -0.0054
3 0.0024 0.0352 -0.0046

sphere
1 0.4269 24.1672 -4.4065
2 0.4269 24.1672 -4.4065
3 0.4269 24.1672 -4.4065

top-hat
1 1.7148 6.1812 0.4786
2 1.7140 2.9059 1.1329
3 0.0108 1.1921 -0.2276

trihedral
1 3.8552× 10−4 0.0255 -0.0047
2 3.8552× 10−4 0.0255 -0.0047
3 3.8552× 10−4 0.0255 -0.0047

cylinder
1 0.8770 10.2192 -1.1668
2 0.8770 10.2192 -1.1668
3 0.8770 10.2192 -1.1668

The sparsest solution pertaining to the largest coefficient for each iteration cor-

responds to a single shape. The shapes returned for each iteration respectively are

dihedral, top-hat, and plate which correctly correspond to the shapes within the tar-

get scene. The molecules corresponding to each coefficient maximum are selected for

parameter estimation.

Estimates of the posterior log-likelihoods are calculated for each atom within

each of the three molecules. These estimates are plotted and provided in Figure 4.19.

The largest log-likelihoods correspond to the correct atoms as shown by the associated

parameters provided in Table 4.31.

The algorithm successfully chose the correct features and parameters. The next

section will present comprehensive results for the algorithm.
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Table 4.31: Extracted parameter sets for each shape compared to truth for scenario
3, example 1.

Shape X Y Z H L r γ̃ θ̃ φ̃
True plate 10 0 0 1 1 - 0 -30 0

Estimated plate 10 0 0 1 1 - 0 -30 0
True dihedral 0 10 5 2 1 - 0 0 0

Estimated dihedral 0 10 5 2 1 - 0 0 0
True top-hat -10 5 0 3 - 1 0 0 0

Estimated top-hat -10 5 0 3 - 1 0 0 0

4.5 Comprehensive Results

This section will present comprehensive results for the feature extraction algo-

rithm presented in this thesis. First, we describe the effects of SNR and RCS on

target classification and parameter estimation. Second, we analyze several of the

miss-classifications resulting from off-dictionary targets tested in scenario 2. Finally,

we include summary tables that present the feature extraction results for each of the

examples within scenario 2. We concentrate on scenario 2 results since these exam-

ples led to incorrect extractions. All targets tested in scenarios 1 and 3, which were

simulated from atoms contained within the dictionaries, were successfully extracted.

4.5.1 SNR versus RCS. The following SNR data is based on the detection

and estimation of a single target. Each data point represents the percentage of correct

estimation over 100 iterations. Simulations were run using small, medium, and large

RCS targets. The small RCS targets consisted of length, height, and radius parame-

ters from 0.5-3 meters. The medium and large RCS targets consisted of length, height,

and radius parameters from 3.5-6 meters and 6.5-9 meters, respectively. Each iter-

ation consists of a new set of additive random noise and a specific dictionary atom.

The noise level is determined by the appropriate SNR value. The results for each

shape are shown in Figure 4.20.
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(a) Posterior log-likelihood estimates associated
with each atom within the selected plate molecule.

(b) Posterior log-likelihood estimates associated
with each atom within the selected dihedral
molecule.

(c) Posterior log-likelihood estimates associated
with each atom within the selected top-hat
molecule.

Figure 4.19: Posterior log-likelihood estimates for each shape and iteration for sce-
nario 3, example 1.
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(a) Percentage of correct shape estima-
tion versus SNR for small RCS targets
(0.5-3 meter length, height, radius).

(b) Percentage of correct parameter esti-
mation versus SNR for small RCS targets
(0.5-3 meter length, height, radius).

(c) Percentage of correct shape estimation
versus SNR for medium RCS targets (3.5-
6 meter length, height, radius).

(d) Percentage of correct parameter esti-
mation versus SNR for medium RCS tar-
gets (3.5-6 meter length, height, radius).

(e) Percentage of correct shape estimation
versus SNR for large RCS targets (6.5-9
meter length, height, radius).

(f) Percentage of correct parameter esti-
mation versus SNR for large RCS targets
(6.5-9 meter length, height, radius).

Figure 4.20: Percentage of correct estimation of both shape and parameter set for all
shapes versus SNR.
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Both shape classification and parameter estimation reached 100% accuracy by 30

dB SNR. The increased RCS simulations show large improvements in both detection

and estimation percentage for those shapes with a radial component (i.e. top-hat,

sphere, and cylinder). In contrast, the larger RCS values lead to a decrease in both

shape classification and parameter estimation accuracy for the plate, trihedral, and

dihedral. The larger RCS of the shapes that depend only on L and H parameters

may have led to an under-sampled signal. This under-sampling may have caused the

decrease in parameter estimation accuracy and the lower SNR values.

4.5.2 Feature Extraction Scenario Summary. The algorithm successfully

classifies target shapes and estimates their associated parameter sets whenever the

specific target is contained within the defined parameter space and specifically con-

tained within the dictionary. This is evident in the successful feature extraction results

in scenarios 1 and 3. In most cases, the algorithm incorrectly extracts a target when

the parameter set falls outside the defined parameter space. This is shown by the

results from scenario 2. Off-dictionary target locations and radius parameters always

led to incorrect feature extractions. The L and H parameters, although outside of

the defined parameter space, led to expected feature extractions.

The miss-classifications and incorrect parameter estimations of targets located

at X, Y, and Z positions outside of the defined parameter space may be due to the

large spatial separations between locations. The step-size between locations is set to

5 m. The L and H parameter steps are set to the actual range resolution of 0.5 m.

Higher resolution location definitions may lead to better extraction performance.

In some cases within scenario 2, the algorithm misclassified the target shape as

a shape with the wrong polarization response. For example, the algorithm chose a

shape with an odd bounce instead of an even bounce response. This is due to the

resulting BP coefficients and the defined sparsity constraint. In most cases, the correct

shape would have been chosen if a lower cut-off was implemented on the maximum

coefficients returned for each shape. Future research should investigate the addition
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of a lower threshold to improve these results. This may be shown using the results

from plate example 3 in scenario 2.

The maximum coefficients and sparsity values calculated for each shape in this

example are provided below in Table 4.32. The correct shape is a plate target. How-

Table 4.32: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, plate example 3.

Shape max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)
plate 0.1021 0.9386 -0.0856

dihedral 0.0015 0.0300 -0.0046
sphere 0.7549 25.5425 -4.3536
top-hat 0.0042 0.6946 -0.1347
trihedral 0.0030 0.0170 −3.5957× 10−4

cylinder 1.6443 20.2092 -2.3975

ever, the largest (max(ψ)− λ · ‖ψ‖1) value corresponds to the trihedral and leads to

an incorrect trihedral classification. If we assign a lower threshold β to max(ψ) shown

by,

max
Γ

(max(ψ)− λ · ‖ψ‖1) s.t. β ≤ max(ψ) ≤ α (4.2)

we may eliminate the shapes, such as the trihedral, that are chosen based solely on

low sparsity. For example, if we set β = 0.1, then max(ψ) ≥ 0.1 and the dihedral,

top-hat, and trihedral hypotheses are eliminated, as shown in Table 4.33. The new

Table 4.33: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, plate example 3, post thresholding.

Shape max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)
plate 0.1021 0.9386 -0.0856

dihedral 0.0015 0.0300 -0.0046
sphere 0.7549 25.5425 -4.3536
top-hat 0.0042 0.6946 -0.1347
trihedral 0.0030 0.0170 −3.5957× 10−4

cylinder 1.6443 20.2092 -2.3975

hypotheses now only include the plate, sphere, and cylinder for comparison. The

maximum value of (max(ψ) − λ · ‖ψ‖1) now corresponds to the plate and leads to
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a correct shape classification. This thresholding technique may increase extraction

performance for off-dictionary targets.

This method may increase shape classification accuracy, but the algorithm may

still lead to an incorrect parameter set estimation. This is evident in the results for

plate example 2 in scenario 2. The parameter estimation results for this example are

shown in Table 4.34. In this example, the algorithm successfully classifies the target

Table 4.34: Estimated versus true parameters for scenario 2, plate example 2.

Shape X Y Z H L r γ̃ θ̃ φ̃
True plate 0 4 0 2 1 - 0 -30 0

Expected plate 0 5 0 2 1 - 0 -30 0
Estimated plate 0 -5 0 2 1 - 0 -30 0

as a plate. However, the estimated plate Y location is not as expected. This result is

most likely due to phase errors which lead to a lower LS error for the estimated plate,

as shown in Table 4.35. The wavelength for the 10 GHz X-band radar simulated is

Table 4.35: LS errors for the extracted and hypothesized data sets for scenario 2,
plate example 2.

Data ‖x− s(Θn)‖2
2

Extracted 2.5269× 107

Closest 2.7067× 107

approximately 3 cm. The difference in Y location from truth to the estimated is 9

m. At this distance the signal is in phase with the true location. However, the 1 m

difference in the expected is out of phase and may have been the cause of the larger

LS error.

In all scenario 2 examples, the off-dictionary location parameters lead to incor-

rect parameter estimations. These incorrect estimations are products of the selected

parameter spacing and may be mitigated by smart selection of spacing increments.

Finer resolution may be required to attain useful feature extraction results for off-

dictionary targets. To understand the cause of incorrect extraction, we classify errors

as defined by
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Table 4.36: Comprehensive results for all shapes in scenario 2, simulated using off-
dictionary X locations.

Vary X

Result Error Type Shape X Y Z H L r γ̃ θ̃ φ̃

wrong II
True plate 4 0 0 2 1 - 0 -30 0

Estimated plate 10 5 -10 3 0.5 - 0 -30 0

wrong II
True dihedral 4 0 0 2 1 - 0 0 0

Estimated dihedral 10 -10 10 0.5 0.5 - 0 0 0

wrong I
True sphere 4 0 0 - - 2 - - -

Estimated trihedral 0 0 10 0.5 - - 0 0 0
Estimated plate 0 0 10 1 0.5 - 0 -30 0

wrong I
True top-hat 4 0 0 2 - 1 0 0 0

Estimated dihedral 5 0 0 0.5 0.5 - 0 0 0

wrong I
True trihedral 4 0 0 2 - - 0 0 0

Estimated trihedral 5 -10 0 1 - - 0 0 0
Estimated plate 5 10 0 1 1 - 0 -30 0

wrong I
True cylinder 4 0 0 - 2 1 0 0 0

Estimated plate 5 -10 0 0.5 0.5 - 0 -30 0

• Type I: Incorrect shape classification may be fixed with appropriate threshold

on max(ψ).

• Type II: Correct shape classification with incorrect parameter estimation due

to LS error.

• Type III: Incorrect shape classification or model order estimation which may

not be fixed by assigning a threshold on max(ψ).

The feature extractions for each of the examples within scenario 2 are provided in

Tables 4.36-4.39.

The majority of errors causing each of the incorrect feature extractions for sce-

nario 2 are Type I errors. This means that the selection of an appropriate threshold

on max(ψ) would lead to correct shape classifications. The Type II errors were due to

phase errors which led to larger LS errors. The phase term for the 3-D signal model
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Table 4.37: Comprehensive results for all shapes in scenario 2, simulated using off-
dictionary Y locations.

Vary Y

Result Error Type Shape X Y Z H L r γ̃ θ̃ φ̃

wrong II
True plate 0 4 0 2 1 - 0 -30 0

Estimated plate 0 -5 0 2 1 - 0 -30 0

wrong II
True dihedral 0 4 0 2 1 - 0 0 0

Estimated dihedral 0 5 0 0.5 3 - 0 0 0

wrong I
True sphere 0 4 0 - - 2 - - -

Estimated plate 5 5 -5 0.5 0.5 - 0 -30 0

wrong I
True top-hat 0 4 0 2 - 1 0 0 0

Estimated dihedral -5 5 10 0.5 0.5 - 0 0 0

wrong I

True trihedral 0 4 0 2 - - 0 0 0
Estimated dihedral 0 -5 5 0.5 0.5 - 0 0 0
Estimated trihedral 5 -5 -10 0.5 - - 0 0 0
Estimated trihedral -5 10 10 0.5 - - 0 0 0

wrong I
True cylinder 0 4 0 - 2 1 0 0 0

Estimated plate -5 5 10 0.5 0.5 - 0 -30 0

Table 4.38: Comprehensive results for all shapes in scenario 2, simulated using off-
dictionary Z locations.

Vary Z

Result Error Type Shape X Y Z H L r γ̃ θ̃ φ̃

wrong I
True plate 0 0 4 2 1 - 0 -30 0

Estimated trihedral 5 5 -5 0.5 - - 0 0 0

wrong I
True dihedral 0 0 4 2 1 - 0 0 0

Estimated trihedral 0 -5 -10 0.5 - - 0 0 0
Estimated plate 0 -5 -10 1 0.5 - 0 -30 0

wrong I
True sphere 0 0 4 - - 2 - - -

Estimated dihedral -5 -10 10 0.5 0.5 - 0 0 0

wrong I
True top-hat 0 0 4 2 - 1 0 0 0

Estimated trihedral -5 5 -5 0.5 - - - - -
Estimated plate -5 5 -5 1 0.5 - 0 -30 0

wrong II

True trihedral 0 0 4 2 - - 0 0 0
Estimated trihedral 0 -10 5 0.5 - - - - -

Estimated plate 5 5 -5 1 1.5 - 0 -30 0
Estimated plate 5 5 -5 1 1.5 - 0 -30 0

wrong I
True cylinder 0 0 4 - 2 1 0 0 0

Estimated trihedral 10 0 -10 0.5 - - 0 0 0
Estimated plate 10 0 -10 1 0.5 - 0 -30 0
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Table 4.39: Comprehensive results for all shapes in scenario 2, simulated using off-
dictionary RCS parameter locations.

Vary RCS parameters

Result Error Type Shape X Y Z H L r γ̃ θ̃ φ̃

correct
True plate 1 0 0 0 2.3 1 - 0 -30 0

Estimated plate 0 0 0 2.5 1 - 0 -30 0

correct
True plate 2 0 0 0 2 1.3 - 0 -30 0

Estimated plate 0 0 0 2 1.5 - 0 -30 0

correct
True dihedral 1 0 0 0 2.3 1 - 0 0 0

Estimated dihedral 0 0 0 2.5 1 - 0 0 0

wrong III
True dihedral 2 0 0 0 2 1.3 - 0 0 0

Estimated dihedral 0 0 0 1.5 1.5 - 0 0 0
Estimated dihedral 0 0 0 1 0.5 - 0 0 0

wrong I
True sphere 0 0 0 - - 2.3 - - -

Estimated dihedral -5 -10 10 0.5 0.5 - 0 0 0

correct
True top-hat 1 0 0 0 2.3 - 1 0 0 0

Estimated top-hat 0 0 0 2.5 - 1 0 0 0

wrong I
True top-hat 2 0 0 0 2 - 1.3 0 0 0

Estimated trihedral 5 -5 -10 0.5 - - 0 0 0
Estimated plate 5 -5 -10 1 0.5 - 0 -30 0

correct
True trihedral 0 0 0 2.3 - - 0 0 0

Estimated trihedral 0 0 0 2.5 - - 0 0 0

correct
True cylinder 1 0 0 0 - 2.3 1 0 0 0

Estimated cylinder 0 0 0 - 2.5 1 0 0 0

wrong I
True cylinder 2 0 0 0 - 2 1.3 0 0 0

Estimated trihedral 0 -10 0 0.5 - - 0 0 0
Estimated plate 0 -10 0 1 0.5 - 0 -30 0
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is defined by the differential range ∆R. From Section 2.4,

∆R(Λ(τ); Θm) = ∆R0(Λ(τ); Θm) + ∆Rr(Λ(τ); Θm) (4.3)

where

∆R0(Λ(τ); Θm) ≈ 2x0 cosφ(τ) cos θ(τ) + 2y0 sinφ(τ) cos θ(τ) + 2z0 sin θ(τ) (4.4)

and

∆Rr(Λ(τ); Θm) ≈ 2xr cosφ(τ) cos θ(τ) + 2yr sinφ(τ) cos θ(τ) + 2zr sin θ(τ) (4.5)

Therefore, the phase errors are driven by the spatial extent of the X, Y, and Z location

errors.

There are many ways this algorithm may be improved. The results provided

in this thesis should guide future dictionary based feature extraction research efforts.

In Chapter V, we review the methodology of this thesis, provide conclusions, and

summarize several future work possibilities.
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V. Conclusions and Future Work

5.1 Chapter Overview

The dictionary based shape classification and feature extraction algorithm pro-

posed in this thesis sets a new framework for target recognition within a SAR scene

utilizing the 3-D radar scattering models presented in [1]. In this chapter we will

review the objectives, algorithm methodologies, and conclusions. We will end with a

list of proposed future development and research areas.

5.2 Review of Objectives and Methodology

The overarching objective of this research was to derive an algorithm, based

on results and conclusions from [1,10], for canonical shape classification and physical

parameter estimation. The goal was to develop a process that could lend itself to

estimating a confidence metric associated with the extraction results and provide a

framework for an efficient dictionary based approach using the 3-D scattering models

in [1].

The proposed approach relies on dictionaries populated with simulated SAR

phase history data generated using the 3-D radar scattering models derived by Jack-

son in [1]. Dictionaries are created for various canonical shape hypotheses over a

variety of physical parameters. The dictionaries provide a database for comparison

to measured data. The feature extraction problem is structured as a sparse signal

recovery problem which has been a focus in many research efforts within the com-

pressive sensing community, including [6–8, 15–18] using the BP principle. The BP

principle requires low dictionary coherence to provide accurate sparse solutions [7].

Radar collection diversity along with a modified version of the molecule method pre-

sented in [7] are used to minimize the dictionary coherence and support the use of the

spgl1 [11] BP algorithm for shape classification. The output of the BP optimization

identifies a set of highly correlated atoms which closely resemble the measured data.

Posterior log-likelihoods are computed for each of the atoms derived using Bayesian

detection and estimation theory from [13, 14]. The largest log-likelihood, equivalent
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to the MAP estimate, represents the atom which most closely resembles the measured

data set. Finally, the index of this atom is used to extract the associated parameter

set.

5.3 Conclusions

The objective of this research was successfully achieved. A Matlab R© toolbox

was created that successfully implements the algorithms proposed in this research.

This approach was tested using several target scenes that included an array of target

shapes with varying locations and RCS characteristics. The algorithm was able to

correctly extract all shapes within the target scenes, most in low SNR (< 30 dB)

environments. The algorithm also led to the correct physical parameter estimation of

all shapes tested, when the objective parameter set was confined to a dictionary’s de-

fined parameter space. These physical characteristics included height, length, radius,

and location within a 3-D Cartesian space.

This algorithm requires large computational memory capacity to house the dic-

tionaries. The dictionaries used in the simulations presented in this research were

coarsely sampled and covered only a small piece of the operationally possible pa-

rameter space. Prior knowledge of the target scene is required to efficiently utilize

this algorithm. Prior target knowledge will drive the parameter space selected for

dictionary creation.

This research also presented the need for a diverse radar collection profile. Ac-

curate extraction and estimation relies on minimized dictionary coherence. Therefore,

SAR data should be collected over multiple radar frequencies, polarizations, and vary-

ing aspect angles.

5.4 Future Development and Research

The algorithm developed in this research sets up a framework on which to build

upon. Improvements in algorithm efficiency along with developments in dictionary
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creation may lead to improved classification. The proposed research topics listed be-

low are derived from observations made during the development and implementation

of this algorithm. Future work includes:

• Derive a prior pdf that promotes the tractable integration of the denominator

p(Y) needed to calculate an accurate posterior probability p(ψm|Y). Specifi-

cally, see Carin’s work on the hierarchical prior described in [18].

• Investigate the use of more efficient compressive sensing algorithms, as described

by Carin in [18].

• Implement algorithm on the multi-node HPC network to promote finer resolu-

tion dictionaries that can encompass a larger parameter space.

• Compare results over multiple target scenarios with results from the LS algo-

rithm used in [1].

• Attempt classification using algorithm on simulated complex target (such as a

tank) that is comprised of multiple canonical shapes.

• Attempt classification using algorithm on actual measured phase history data

for single shapes using RCS lab.

• Develop thresholding technique to improve classification performance for off-

dictionary parameter sets.

• Modify algorithm to create dictionary data as needed and characterize gains

and losses in computation memory and processing efficiency.

84



Appendix A. Dictionary Coherence Reduction

This appendix includes the dictionary coherence reductions described in Section 3.5.

Specifically, we show the confusion maps illustrating the correlation reductions for

the plate, sphere, top-hat, trihedral, and cylinder dictionaries. The figures included

show the decreases in atom redundancy obtained through increased radar collection

diversity and the implementation of the molecule method.

A.1 Plate Dictionary

The confuser map for the baseline plate dictionary, created using 1 frequency,

HH polarization and linear flight path, is provided in Figure A.1. The coherence

reductions from increasing the radar collection parameter diversities are shown in

Figure A.2.
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Figure A.1: Correlation map corresponding to DΓplate
generated using a linear flight

path, HH polarization, and 1 frequency.
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(a) Correlation map corresponding to DΓplate
gen-

erated using a linear flight path, HH polarization,
and 125 frequencies.

(b) Correlation map corresponding to DΓplate
gen-

erated using a nonlinear flight path, HH polariza-
tion, and 1 frequency.

(c) Correlation map corresponding to DΓplate
gen-

erated using a linear flight path, HH, HV, and VV
polarizations, and 125 frequencies.

(d) Correlation map corresponding to DΓdihedral

generated using a nonlinear flight path, HH, HV,
and VV polarizations, and 125 frequencies.

Figure A.2: Reduction in correlation due to increased aspect and frequency diversity
for DΓplate

.
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(a) Correlation map corresponding to DΓplate
gen-

erated using a nonlinear flight path, HH, HV, and
VV polarizations, and 125 frequencies before clus-
tering.

(b) Correlation map corresponding to DΓplate
gen-

erated using a nonlinear flight path, HH, HV, and
VV polarizations, and 125 frequencies after imple-
menting molecule method.

Figure A.3: Reduction in correlation due to molecule clustering algorithm.

The reduction in coherence and dictionary size due to the molecule method is

shown in Figure A.3.

A.2 Sphere Dictionary

The confuser map for the baseline Sphere dictionary, created using 1 frequency,

HH polarization and linear flight path, is provided in Figure A.4. The coherence

reductions from increasing the radar collection parameter diversities are shown in

Figure A.5.
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Figure A.4: Correlation map corresponding to DΓsphere
generated using a linear flight

path, HH polarization, and 1 frequency.
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(a) Correlation map corresponding to DΓsphere

generated using a linear flight path, HH polariza-
tion, and 125 frequencies.

(b) Correlation map corresponding to DΓsphere

generated using a nonlinear flight path, HH po-
larization, and 1 frequency.

(c) Correlation map corresponding to DΓsphere

generated using a linear flight path, HH, HV, and
VV polarizations, and 125 frequencies.

(d) Correlation map corresponding to DΓsphere

generated using a nonlinear flight path, HH, HV,
and VV polarizations, and 125 frequencies.

Figure A.5: Reduction in correlation due to increased aspect and frequency diversity
for DΓsphere

.
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(a) Correlation map corresponding to DΓsphere

generated using a nonlinear flight path, HH, HV,
and VV polarizations, and 125 frequencies before
clustering.

(b) Correlation map corresponding to DΓsphere

generated using a nonlinear flight path, HH, HV,
and VV polarizations, and 125 frequencies after
implementing molecule method.

Figure A.6: Reduction in correlation due to molecule clustering algorithm.

The reduction in coherence and dictionary size due to the molecule method is

shown in Figure A.6.

A.3 Top-Hat Dictionary

The confuser map for the baseline top-hat dictionary, created using 1 frequency,

HH polarization and linear flight path, is provided in Figure A.7. The coherence

reductions from increasing the radar collection parameter diversities are shown in

Figure A.8.

91



Figure A.7: Correlation map corresponding to DΓtop-hat
generated using a linear flight

path, HH polarization, and 1 frequency.
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(a) Correlation map corresponding to DΓtop-hat

generated using a linear flight path, HH polariza-
tion, and 125 frequencies.

(b) Correlation map corresponding to DΓtop-hat

generated using a nonlinear flight path, HH po-
larization, and 1 frequency.

(c) Correlation map corresponding to DΓtop-hat

generated using a linear flight path, HH, HV, and
VV polarizations, and 125 frequencies.

(d) Correlation map corresponding to DΓtop-hat

generated using a nonlinear flight path, HH, HV,
and VV polarizations, and 125 frequencies.

Figure A.8: Reduction in correlation due to increased aspect and frequency diversity
for DΓtop-hat

.
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(a) Correlation map corresponding to DΓtop-hat

generated using a nonlinear flight path, HH, HV,
and VV polarizations, and 125 frequencies before
clustering.

(b) Correlation map corresponding to DΓtop-hat

generated using a nonlinear flight path, HH, HV,
and VV polarizations, and 125 frequencies after
implementing molecule method.

Figure A.9: Reduction in correlation due to molecule clustering algorithm.

The reduction in coherence and dictionary size due to the molecule method is

shown in Figure A.9.

A.4 Trihedral Dictionary

The confuser map for the baseline trihedral dictionary, created using 1 frequency,

HH polarization and linear flight path, is provided in Figure A.10. The coherence

reductions from increasing the radar collection parameter diversities are shown in

Figure A.11.

94



Figure A.10: Correlation map corresponding to DΓtrihedral
generated using a linear

flight path, HH polarization, and 1 frequency.
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(a) Correlation map corresponding to DΓtrihedral

generated using a linear flight path, HH polariza-
tion, and 125 frequencies.

(b) Correlation map corresponding to DΓtrihedral

generated using a nonlinear flight path, HH polar-
ization, and 1 frequency.

(c) Correlation map corresponding to DΓtrihedral

generated using a linear flight path, HH, HV, and
VV polarizations, and 125 frequencies.

(d) Correlation map corresponding to DΓtrihedral

generated using a nonlinear flight path, HH, HV,
and VV polarizations, and 125 frequencies.

Figure A.11: Reduction in correlation due to increased aspect and frequency diversity
for DΓtrihedral

.
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(a) Correlation map corresponding to DΓtrihedral

generated using a nonlinear flight path, HH, HV,
and VV polarizations, and 125 frequencies before
clustering.

(b) Correlation map corresponding to DΓtrihedral

generated using a nonlinear flight path, HH, HV,
and VV polarizations, and 125 frequencies after
implementing molecule method.

Figure A.12: Reduction in correlation due to molecule clustering algorithm.

The reduction in coherence and dictionary size due to the molecule method is

shown in Figure A.12.

A.5 Cylinder Dictionary

The confuser map for the baseline cylinder dictionary, created using 1 frequency,

HH polarization and linear flight path, is provided in Figure A.13. The coherence

reductions from increasing the radar collection parameter diversities are shown in

Figure A.14.
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Figure A.13: Correlation map corresponding to DΓcylinder
generated using a linear

flight path, HH polarization, and 1 frequency.
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(a) Correlation map corresponding to DΓcylinder

generated using a linear flight path, HH polariza-
tion, and 125 frequencies.

(b) Correlation map corresponding to DΓcylinder

generated using a nonlinear flight path, HH po-
larization, and 1 frequency.

(c) Correlation map corresponding to DΓcylinder

generated using a linear flight path, HH, HV, and
VV polarizations, and 125 frequencies.

(d) Correlation map corresponding to DΓcylinder

generated using a nonlinear flight path, HH, HV,
and VV polarizations, and 125 frequencies.

Figure A.14: Reduction in correlation due to increased aspect and frequency diversity
for DΓcylinder

.
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(a) Correlation map corresponding to DΓcylinder

generated using a nonlinear flight path, HH, HV,
and VV polarizations, and 125 frequencies before
clustering.

(b) Correlation map corresponding to DΓcylinder

generated using a nonlinear flight path, HH, HV,
and VV polarizations, and 125 frequencies after
implementing molecule method.

Figure A.15: Reduction in correlation due to molecule clustering algorithm.

The reduction in coherence and dictionary size due to the molecule method is

shown in Figure A.15. The large coherence in the bottom right-hand corner of Fig-

ure A.15 is due to correlations between the representative means. This shape is the

only shape that led to significant coherence between replaced atoms. These corre-

lations lead to the degradation in parameter estimation performance shown in the

original SNR plots. For this shape, the molecule method is modified to replace cor-

related atoms with the single atom corresponding to the current index instead of the

mean of the atoms. The method leads to the successful classification and estimation

of the cylinder and a diagonalized Gram-Matrix. The reduction in coherence is shown

in Figure A.16.
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(a) Correlation map corresponding to DΓcylinder

generated using a nonlinear flight path, HH, HV,
and VV polarizations, and 125 frequencies after
implementing original molecule method.

(b) Correlation map corresponding to DΓcylinder

generated using a nonlinear flight path, HH, HV,
and VV polarizations, and 125 frequencies after
implementing modified molecule method.

Figure A.16: Reduction in correlation due to modified molecule clustering algorithm.
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Appendix B. Scenario 1 Results

This appendix includes the scenario 1 results for target scenes containing a single

plate, sphere, top-hat, or trihedral.

B.1 Plate Target

The plate target scene is simulated using atom 2501 from the plate dictionary.

The specific parameters used to create the plate are shown in Table B.1.

Table B.1: The parameters used to create the plate for scenario 1.

Shape X Y Z H L r γ̃ θ̃ φ̃
plate -10 -10 -10 2 1.5 - 0 -30 0

The atom and molecule correspondences are provided in Table B.2. The six

Table B.2: Atom correspondence for measured shape.

Shape Orig. Dict. Atom Molecule Molecule Atom
plate 2501 1 61

resulting coefficient plots, separated by shape, are provided in Figure B.1.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure B.1: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 1 for the plate target scene.
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The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table B.3.

Table B.3: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 1, plate example.

Shape max(ψ) ‖ψ‖1 (ψ − λ · ‖ψ‖1)
plate 1.0662 1.1840 0.8293

dihedral 0.0023 0.0434 -0.0064
sphere 0.2947 18.1124 -3.3278
top-hat 0.0090 1.0522 -0.2014

trihedral 2.5678× 10−4 0.0335 -0.0064
cylinder 0.1330 6.4715 -1.1613

This method correctly leads to a plate classification. The plate dictionary

molecule corresponding to the largest coefficient within ψ is chosen as the “sub-

dictionary” used for parameter estimation via the MAP estimator. This largest coef-

ficient correctly corresponds to molecule 1.

Estimates of the posterior log-likelihoods are calculated for each atom within

this molecule. These estimates are plotted and provided in Figure B.2. The largest

log-likelihood corresponds to the correct atom (atom 61) as shown by the associated

parameters provided in Table B.4.

Table B.4: Estimated versus true parameters for scenario 1, plate example.

Shape X Y Z H L r γ̃ θ̃ φ̃
True plate -10 -10 -10 2 1.5 - 0 -30 0

Estimated plate -10 -10 -10 2 1.5 - 0 -30 0

B.2 Sphere Target

The sphere target scene is simulated using atom 700 from the sphere dictionary.

The specific parameters used to create the sphere are shown in Table B.5.

The sphere dictionary coherence was already minimized prior to implementing

the molecule clustering. Therefore, only the BP method is used to select the appro-
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Figure B.2: Posterior log-likelihood estimates associated with each atom within the
selected plate molecule (True Atom = 61).

Table B.5: The parameters used to create the sphere for scenario 1.

Shape X Y Z H L r γ̃ θ̃ φ̃
sphere 10 10 0 - - 3 0 0 0

priate atom. The six resulting coefficient plots, separated by shape, are provided in

Figure B.3.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure B.3: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 1 for the sphere target scene.
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The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table B.6.

Table B.6: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 1, sphere example.

Shape max(ψ) ‖ψ‖1 (ψ − λ · ‖ψ‖1)
plate 5.7913× 10−4 0.0045 −3.2081× 10−4

dihedral 3.1978× 10−5 5.7225× 10−4 −8.2743× 10−5

sphere 0.9999 1.2553 0.7489
top-hat 1.0751× 10−4 0.0150 -0.0029

trihedral 3.5184× 10−4 0.0018 −1.3389× 10−6

cylinder 0.0473 0.9931 -1.1513

This method correctly leads to a sphere classification. The sphere dictionary

atom corresponding to the largest coefficient within ψ is chosen as the index for

parameter estimation. This index corresponds to the correct atom (atom 700) as

shown by the associated parameters provided in Table B.7.

Table B.7: Estimated versus true parameters for scenario 1, sphere example.

Shape X Y Z H L r γ̃ θ̃ φ̃
True sphere 10 10 0 - - 3 0 0 0

Estimated sphere 10 10 0 - - 3 0 0 0

B.3 Top-hat Target

The top-hat target scene is simulated using atom 2563 from the top-hat dic-

tionary. The specific parameters used to create the plate are shown in Table B.8.

Table B.8: The parameters used to create the top-hat for scenario 1.

Shape X Y Z H L r γ̃ θ̃ φ̃
top-hat 0 0 0 1.5 - 2 0 0 0

The atom and molecule correspondences are provided in Table B.9. The six

resulting coefficient plots, separated by shape, are provided in Figure B.4.
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Table B.9: Atom correspondence for measured shape.

Shape Orig. Dict. Atom Molecule Molecule Atom
top-hat 2563 438 3
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure B.4: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 1 for the top-hat target scene.
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The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table B.10.

Table B.10: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 1, top-hat example.

Shape max(ψ) ‖ψ‖1 (ψ − λ · ‖ψ‖1)
plate 3.7997× 10−4 0.0067 −9.5520× 10−4

dihedral 0.0094 0.0670 -0.0040
sphere 0.0191 1.7713 -0.3352
top-hat 0.8570 0.9742 0.6621
trihedral 2.3507× 10−5 0.0010 −1.7903× 10−4

cylinder 0.0071 0.4928 -0.0914

This method correctly leads to a top-hat classification. The top-hat dictionary

molecule corresponding to the largest coefficient within ψ is chosen as the “sub-

dictionary” used for parameter estimation via the MAP estimator. This largest coef-

ficient correctly corresponds to molecule 438.

Estimates of the posterior log-likelihoods are calculated for each atom within

this molecule. These estimates are plotted and provided in Figure B.5. The largest

log-likelihood corresponds to the correct atom (atom 3) as shown by the associated

parameters provided in Table B.11.

Table B.11: Estimated versus true parameters for scenario 1, top-hat example.

Shape X Y Z H L r γ̃ θ̃ φ̃
True top-hat 0 0 0 1.5 - 2 0 0 0

Estimated top-hat 0 0 0 1.5 - 2 0 0 0

B.4 Trihedral Target

The trihedral target scene is simulated using atom 725 from the trihedral dic-

tionary. The specific parameters used to create the plate are shown in Table B.12.

The atom and molecule correspondences are provided in Table B.13. The six

resulting coefficient plots, separated by shape, are provided in Figure B.6.
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Figure B.5: Posterior log-likelihood estimates associated with each atom within the
selected top-hat molecule (True Atom = 3).

Table B.12: The parameters used to create the trihedral for scenario 1.

Shape X Y Z H L r γ̃ θ̃ φ̃
trihedral 10 10 5 3 - - 0 0 0

Table B.13: Atom correspondence for measured shape.

Shape Orig. Dict. Atom Molecule Molecule Atom
trihedral 725 100 6
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure B.6: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 1 for the trihedral target scene.
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The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table B.14.

Table B.14: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 1, trihedral example.

Shape max(ψ) ‖ψ‖1 (ψ − λ · ‖ψ‖1)
plate 1.2445 8.7238 -0.5003

dihedral 0.0104 0.1822 -0.0260
sphere 48.3599 1.2343× 103 -198.5060
top-hat 0.0363 4.7410 -0.9119

trihedral 2.3736 2.4128 1.8910
cylinder 18.0406 323.6352 -46.6864

This method correctly leads to a trihedral classification. The trihedral dic-

tionary molecule corresponding to the largest coefficient within ψ is chosen as the

“sub-dictionary” used for parameter estimation via the MAP estimator. This largest

coefficient correctly corresponds to molecule 100.

Estimates of the posterior log-likelihoods are calculated for each atom within

this molecule. These estimates are plotted and provided in Figure B.7. The largest

log-likelihood corresponds to the correct atom (atom 6) as shown by the associated

parameters provided in Table B.15.

Table B.15: Estimated versus true parameters for scenario 1, trihedral example.

Shape X Y Z H L r γ̃ θ̃ φ̃
True trihedral 10 10 5 3 - - 0 0 0

Estimated trihedral 10 10 5 3 - - 0 0 0
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Figure B.7: Posterior log-likelihood estimates associated with each atom within the
selected trihedral molecule (True Atom = 3).
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Appendix C. Scenario 2 Results

C.1 Dihedral Results

C.1.1 X Parameter. In this example, we generate a dihedral target located

at x = 4 m with an SNR of 30 dB. The dihedral target is simulated using the param-

eters listed in Table C.1. The BP results for each shape are provided in Figure C.1.

Table C.1: The parameters used to create the dihedral target for scenario 2, example
1.

Shape X Y Z H L r γ̃ θ̃ φ̃
dihedral 4 0 0 2 1 - 0 0 0

The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table C.2. This

Table C.2: Maximum coefficients from each shape dictionary along with`1`1 norm
(sparsity descriptor).

Shape max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)
plate 0.0021 0.0396 -0.0058

dihedral 0.1833 0.4004 0.1033
sphere 0.1245 10.2423 -1.9239
top-hat 0.0873 3.5333 -0.6193

trihedral 1.8667× 10−4 0.0055 −9.1924× 10−4

cylinder 0.0540 2.8144 -0.5089

method correctly leads to a dihedral classification. However, the algorithm incorrectly

estimates both the size and location parameters, as shown in Table C.3.

Table C.3: Estimated versus true parameters for scenario 2, dihedral example 1.

Shape X Y Z H L r γ̃ θ̃ φ̃
True dihedral 4 0 0 2 1 - 0 0 0

Expected dihedral 5 0 0 2 1 - 0 0 0
Estimated dihedral 10 -10 -10 0.5 0.5 - 0 0 0

Initially, we make the hypothesis that the parameter set extracted should be the

closest dictionary contained representative parameter set, Θ = [5, 0, 0, 2, 1, 0, 0, 0, 0]
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(atom 2439). Although this atom seems closer, the range profile provided in Figure C.2

shows that the extracted parameter set, Θ = [10,−10,−10, 0.5, 0.5, 0, 0, 0, 0] (atom

3770) is more representative in the range, or x dimension. This range error may have

led to a larger LS error and the incorrect parameter set estimation. The LS errors are

provided in Table C.4. The minimum LS error is equivalent to the MAP estimates,

Table C.4: LS errors for the extracted and hypothesized data sets for scenario 2,
dihedral example 1.

Data ‖x− s(Θn)‖2
2

Extracted 1.3989× 108

Closest 2.7285× 108

as described in Chapter II.

C.1.2 Y Parameter. In this example, we generate a dihedral target lo-

cated at y = 4 m with an SNR of 30 dB. The dihedral target is simulated using the

parameters listed in Table C.5.

Table C.5: The parameters used to create the dihedral target for scenario 2, example
2.

Shape X Y Z H L r γ̃ θ̃ φ̃
dihedral 0 4 0 2 1 - 0 0 0

The BP results for each shape are provided in Figure C.3.

The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table C.6.

This method correctly leads to a dihedral classification. The algorithm estimates

the closest y location parameter, but incorrectly estimates the RCS parameters L and

H, as shown in Table C.7.

Initially, we assume that the algorithm should choose the dihedral corresponding

to the closest parameter set. Therefore, the expected parameter set would be Θ =

[0, 5, 0, 2, 1, 0, 0, 0, 0]. The extracted parameter set corresponds to atom 12. The

116



Table C.6: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, dihedral example 2.

Shape max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)
plate 0.0015 0.0395 -0.0064

dihedral 0.4116 0.6430 0.2830
sphere 0.1197 11.0668 -2.0936
top-hat 0.0674 2.9651 -0.5257

trihedral 1.7573× 10−4 0.0060 -0.0010
cylinder 0.0486 2.7934 -0.5101

Table C.7: Estimated versus true parameters for scenario 2, dihedral example 2.

Shape X Y Z H L r γ̃ θ̃ φ̃
True dihedral 0 4 0 2 1 - 0 0 0

Expected dihedral 0 5 0 2 1 - 0 0 0
Estimated dihedral 0 5 0 0.5 3 - 0 0 0

total LS-errors are provided in Table C.8. The lowest LS error corresponds to the

extracted data set and is equivalent to the largest log-likelihood. Next, we will repeat

this process for the z parameter.

C.1.3 Z Parameter. In this example, we generate a dihedral target located at

z = 4 m with an SNR of 30 dB. The dihedral target is simulated using the parameters

listed in Table C.9.

The BP results for each shape are provided in Figures C.4-C.5.

The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table C.2.

This method incorrectly classifies the shape as a combination of a trihedral and

a plate. The associated extracted parameter set is provided in Table C.11.

Table C.8: LS errors for the extracted and hypothesized data sets for scenario 2,
dihedral example 2.

Data ‖x− s(Θn)‖2
2

Extracted 1.0190× 108

Closest 2.7791× 108
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Table C.9: The parameters used to create the dihedral target for scenario 2, example
3.

Shape X Y Z H L r γ̃ θ̃ φ̃
dihedral 0 0 4 2 1 - 0 0 0

Table C.10: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, dihedral example 3.

Shape Iteration max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)

plate
1 0.0017 0.0382 -0.0060
2 0.1916 0.2863 0.1344

dihedral
1 0.0170 0.6365 -0.1103
2 0.0170 0.6365 -0.1103

sphere
1 0.1163 10.4378 -1.9713
2 3.2425 50.6746 -6.8924

top-hat
1 0.1327 3.6546 -0.5982
2 0.1327 3.6546 -0.5982

trihedral
1 1.5837× 10−4 0.0071 -0.0013
2 1.2568× 10−4 0.0727 -0.0144

cylinder
1 0.0626 2.9127 -0.5199
2 0.5477 8.5697 -1.1662

The total LS errors for the extracted data versus the hypothesized closest data

are provided in Table C.12.

C.1.4 RCS Parameters. In this section we discuss the results of two example

target scenes. Each of the scenes includes a dihedral that is generated using a length

or height parameter that falls outside of the dictionary parameter space resolution

with an SNR of 30 dB. The dihedral targets are simulated using the parameters listed

in Table C.13.

Table C.11: Estimated versus true parameters for scenario 2, dihedral example 3.

Shape X Y Z H L r γ̃ θ̃ φ̃
True dihedral 0 0 4 2 1 - 0 0 0

Expected dihedral 0 0 5 2 1 - 0 0 0
Estimated trihedral 0 -5 -10 0.5 - - 0 0 0

Estimated plate 0 -5 -10 1 0.5 - 0 -30 0
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Table C.12: LS errors for the extracted and hypothesized data sets for scenario 2,
dihedral example 3.

Data ‖x− s(Θn)‖2
2

Extracted 2.0210× 108

Closest 2.8090× 108

Table C.13: The parameters used to create the dihedral target for scenario 2, examples
4 and 5.

Shape X Y Z H L r γ̃ θ̃ φ̃
dihedral 1 0 0 0 2.3 1 - 0 0 0
dihedral 2 0 0 0 2 1.3 - 0 0 0

The BP results for each shape are provided in Figures C.6-C.8.

The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table C.14 and

Table C.15.

Table C.14: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, dihedral example 4.

Shape max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)
plate 0.0022 0.0491 -0.0076

dihedral 0.9535 1.0159 0.7503
sphere 0.1284 12.6538 -2.4024
top-hat 0.1849 4.4749 -0.7101

trihedral 1.7732× 10−4 0.0064 -0.0011
cylinder 0.0459 3.3130 -0.6167

For both examples, the shape is correctly classified as a dihedral. The expected

parameter set estimations are Θ = [0, 0, 0, 2.5, 1, 0, 0, 0, 0] and Θ = [0, 0, 0, 2, 1.5, 0, 0, 0, 0],

since these are the closest defined sets. The algorithm successfully estimates the ex-

pected parameter set in example 4, but fails to estimation the expected set for exam-

ple 5. In example 5, the algorithm overestimates the model order. These results are

provided in Table C.16 and Table C.17.
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Table C.15: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, dihedral example 5.

Shape Iteration max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)

plate
1 0.0034 0.0500 -0.0066
2 0.0034 0.0500 -0.0066

dihedral
1 1.0202 1.0891 0.8024
2 0.1672 0.2053 0.1261

sphere
1 0.2000 14.9725 -2.7946
2 0.2000 14.9725 -2.7946

top-hat
1 0.1891 4.4130 -0.6935
2 0.0661 2.3852 -0.4110

trihedral
1 2.3260× 10−4 0.0073 -0.0012
2 2.3260× 10−4 0.0073 -0.0012

cylinder
1 0.0843 3.5878 -0.6332
2 0.0843 3.5878 -0.6332

Table C.16: Estimated versus true parameters for scenario 2, dihedral example 4.

Shape X Y Z H L r γ̃ θ̃ φ̃
True dihedral 0 0 0 2.3 1 - 0 0 0

Expected dihedral 0 0 0 2.5 1 - 0 0 0
Estimated dihedral 0 0 0 2.5 1 - 0 0 0

C.2 Sphere Results

C.2.1 X Parameter. In this example, we generate a sphere target located at

x = 4 m with an SNR of 30 dB. The sphere target is simulated using the parameters

listed in Table C.18. The BP results for each shape are provided in Figures C.9-C.10.

Table C.17: Estimated versus true parameters for scenario 2, dihedral example 5.

Shape X Y Z H L r γ̃ θ̃ φ̃
True dihedral 0 0 0 2 1.3 - 0 0 0

Expected dihedral 0 0 0 2 1.5 - 0 0 0
Estimated dihedral 1 0 0 0 1.5 1.5 - 0 0 0
Estimated dihedral 2 0 0 0 1 0.5 - 0 0 0
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Table C.18: The parameters used to create the sphere target for scenario 2, example
1.

Shape X Y Z H L r γ̃ θ̃ φ̃
sphere 4 0 0 - - 2 - - -
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.1: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 2, dihedral example 1.
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Figure C.2: Range profile for the true, extracted, and close simulated dihedral targets.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.3: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 2, dihedral example 2.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.4: BP results for the first iteration for each of the reduced shape dictionaries
used in the feature extraction problem in scenario 2, dihedral example 3.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.5: BP results for the final iteration for each of the reduced shape dictionaries
used in the feature extraction problem in scenario 2, dihedral example 3.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.6: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 2, dihedral example 4.

127



(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.7: BP results for the first iteration for each of the reduced shape dictionaries
used in the feature extraction problem in scenario 2, dihedral example 5.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.8: BP results for the final iteration for each of the reduced shape dictionaries
used in the feature extraction problem in scenario 2, dihedral example 5.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.9: BP results for the first iteration for each of the reduced shape dictionaries
used in the feature extraction problem in scenario 2, sphere example 1.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.10: BP results for the final iteration for each of the reduced shape dictionar-
ies used in the feature extraction problem in scenario 2, sphere example
1.
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The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table C.19. This

Table C.19: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, sphere example 1.

Shape Iteration max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)

plate
1 0.0015 0.0111 −6.9248× 10−4

2 0.1913 0.2704 0.1372

dihedral
1 2.1916× 10−5 3.8250× 10−4 −5.4583× 10−5

2 2.1916× 10−5 3.8250× 10−4 −5.4583× 10−5

sphere
1 0.1928 4.9376 -0.7947
2 3.3469 53.9532 -7.4437

top-hat
1 6.0841× 10−5 0.0107 -0.0021
2 6.0841× 10−5 0.0107 -0.0021

trihedral
1 5.0893× 10−4 0.0026 −6.5790× 10−6

2 1.9959× 10−4 0.0675 -0.0133

cylinder
1 0.0702 1.0799 -0.1458
2 1.6847 15.4521 -1.4058

method incorrectly leads to a trihedral and plate classification. The extracted shapes

along with their associated parameter sets are provided in Table C.20.

Table C.20: Estimated versus true parameters for scenario 2, sphere example 1.

Shape X Y Z H L r γ̃ θ̃ φ̃
True sphere 4 0 0 - - 2 - - -

Expected sphere 5 0 0 - - 2 - - -
Estimated trihedral 0 0 10 0.5 - - 0 0 0

Estimated plate 0 0 10 1 0.5 - 0 -30 0

Initially, we make the hypothesis that the parameter set extracted should be the

closest dictionary contained representative parameter set, Θ = [5, 0, 0, 2] (atom 438).

The LS errors given by are provided in Table C.21. In this example, the hypothesized

Table C.21: LS errors for the extracted and hypothesized data sets for scenario 2,
sphere example 1.

Data ‖x− s(Θn)‖2
2

Extracted 6.1206× 107

Closest 9.6771× 105
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data leads to a lower LS error. However, the algorithm still chooses the two other

shapes. This is most likely due to the sparsity constraint. The sphere coefficient

vector is much less sparse as shown in Table C.19.

C.2.2 Y Parameter. In this example, we generate a sphere target located at

y = 4 m with an SNR of 30 dB. The sphere target is simulated using the parameters

listed in Table C.22.

Table C.22: The parameters used to create the sphere target for scenario 2, example
2.

Shape X Y Z H L r γ̃ θ̃ φ̃
sphere 0 4 0 - - 2 - - -

The BP results for each shape are provided in Figure C.11.

133



(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.11: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 2, sphere example 2.
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The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table C.23.

Table C.23: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, sphere example 2.

Shape max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)
plate 0.0093 0.0176 0.0058

dihedral 2.4215× 10−5 3.4927× 10−4 −4.5639× 10−5

sphere 0.1985 4.1117 -0.6239
top-hat 6.2936× 10−5 0.0106 -0.0021

trihedral 3.3194× 10−4 0.0025 −1.6731× 10−4

cylinder 0.0895 0.8079 -0.0720

This method incorrectly leads to a plate classification. The associated extracted

parameter set is provided in Table C.24.

Table C.24: Estimated versus true parameters for scenario 2, sphere example 2.

Shape X Y Z H L r γ̃ θ̃ φ̃
True sphere 0 4 0 - - 2 - - -

Expected sphere 0 5 0 - - 2 - - -
Estimated plate 5 5 -5 0.5 0.5 - 0 -30 0

Initially, we assume that the algorithm should choose the sphere correspond-

ing to the closest parameter set. Therefore, the expected parameter set would be

Θ = [0, 5, 0, 2]. This set corresponds to atom 443 within the sphere dictionary. The

extracted parameter set corresponds to atom 113 within the plate dictionary. The

total LS errors for the extracted data versus the hypothesized closest data are pro-

vided in Table C.25. As with the sphere example 1, the extracted error is greater

Table C.25: LS errors for the extracted and hypothesized data sets for scenario 2,
sphere example 2.

Data ‖x− s(Θn)‖2
2

Extracted 2.8232× 106

Closest 9.4698× 105

than the hypothesis data. However, the sparsity of the extracted coefficient vector is

much less, as shown in Table C.23.
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C.2.3 Z Parameter. In this example, we generate a sphere target located at

z = 4 m with an SNR of 30 dB. The sphere target is simulated using the parameters

listed in Table C.26.

Table C.26: The parameters used to create the sphere target for scenario 2, example
3.

Shape X Y Z H L r γ̃ θ̃ φ̃
sphere 0 0 4 - - 2 - - -

The BP results for each shape are provided in Figure C.12.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.12: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 2, sphere example 3.
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The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table C.27.

Table C.27: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, sphere example 3.

Shape max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)
plate 8.9865× 10−4 0.0129 -0.0017

dihedral 2.9631× 10−5 5.0004× 10−4 −7.0376× 10−5

sphere 0.4259 4.8113 -0.5364
top-hat 7.9184× 10−5 0.0105 -0.0020

trihedral 3.2449× 10−4 0.0024 −1.5230× 10−4

cylinder 0.0475 0.9930 -0.1511

This method incorrectly leads to a dihedral classification. The associated ex-

tracted parameter set is provided in Table C.28.

Table C.28: Estimated versus true parameters for scenario 2, sphere example 3.

Shape X Y Z H L r γ̃ θ̃ φ̃
True sphere 0 4 0 - - 2 - - -

Expected sphere 0 5 0 - - 2 - - -
Estimated dihedral -5 -10 10 0.5 0.5 - 0 0 0

Initially, we assume that the algorithm should choose the sphere correspond-

ing to the closest parameter set. Therefore, the expected parameter set would be

Θ = [0, 0, 5, 2]. This set corresponds to atom 463 within the sphere dictionary. The

extracted parameter set corresponds to atom 102 within the dihedral dictionary. The

total LS errors for the extracted data versus the hypothesized closest data are pro-

vided in Table C.29. As with the sphere example 1 and 2, the extracted error is

Table C.29: LS errors for the extracted and hypothesized data sets for scenario 2,
sphere example 3.

Data ‖x− s(Θn)‖2
2

Extracted 4.6663× 106

Closest 9.4191× 105

greater than the hypothesis data. However, the sparsity of the extracted coefficient

vector is much less, as shown in Table C.27.
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C.2.4 RCS Parameters. In this example, we generate a sphere target with

RCS parameter r = 2.3 m with an SNR of 30 dB. The sphere target is simulated

using the parameters listed in Table C.30.

Table C.30: The parameters used to create the sphere target for scenario 2, example
4.

Shape X Y Z H L r γ̃ θ̃ φ̃
sphere 0 0 0 - - 2.3 - - -

The BP results for each shape are provided in Figure C.13.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.13: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 2, sphere example 4.
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The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table C.31.

Table C.31: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, sphere example 4.

Shape max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)
plate 9.0017× 10−4 0.0114 -0.0014

dihedral 1.6933× 10−5 4.0114× 10−4 −6.3294× 10−5

sphere 0.5731 6.0040 -0.6277
top-hat 9.2781× 10−5 0.0112 -0.0021

trihedral 2.5944× 10−4 0.0029 −3.2844× 10−4

cylinder 0.1040 1.2727 -0.1506

For this example, the shape is incorrectly classified as a dihedral. The expected

parameter set estimation is Θ = [0, 0, 0, 2.5]. The extracted parameter set is provided

inTable C.32.

Table C.32: Estimated versus true parameters for scenario 2, sphere example 4.

Shape X Y Z H L r γ̃ θ̃ φ̃
True sphere 0 0 0 - - 2.3 - - -

Expected sphere 0 0 0 - - 2.5 - - -
Estimated dihedral -5 -10 10 0.5 0.5 - 0 0 0

C.3 Top-Hat Results

C.3.1 X Parameter. In this example, we generate a top-hat target located at

x = 4 m with an SNR of 30 dB. The top-hat target is simulated using the parameters

listed in Table C.33. The BP results for each shape are provided in Figure C.14.

Table C.33: The parameters used to create the top-hat target for scenario 2, example
1.

Shape X Y Z H L r γ̃ θ̃ φ̃
top-hat 4 0 0 2 - 1 0 0 0
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.14: BP results for the first iteration for each of the reduced shape dictionaries
used in the feature extraction problem in scenario 2, top-hat example 1.
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The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table C.34. This

Table C.34: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, top-hat example 1.

Shape max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)
plate 2.8102× 10−4 0.0057 −8.6823× 10−4

dihedral 0.0938 0.1217 0.0694
sphere 0.0166 1.6821 -0.3199
top-hat 0.2010 3.7888 -0.5567

trihedral 3.1400× 10−5 0.0010 −1.7440× 10−4

cylinder 0.0087 0.4364 -0.0786

method incorrectly leads to a dihedral classification. The extracted shape along with

its associated parameter set is provided in Table C.35.

Table C.35: Estimated versus true parameters for scenario 2, top-hat example 1.

Shape X Y Z H L r γ̃ θ̃ φ̃
True top-hat 4 0 0 2 - 1 0 0 0

Expected top-hat 5 0 0 2 - 1 0 0 0
Estimated dihedral 5 0 0 0.5 0.5 - 0 0 0

Initially, we make the hypothesis that the parameter set extracted should be the

closest dictionary contained representative parameter set, Θ = [5, 0, 0, 2, 0, 1, 0, 0, 0]

(atom 1189). As with the plate example presented in Section 4.3, the misclassification

is caused by the lower sparsity term computed for the dihedral. Again, if we modified

the algorithm to separate shapes based on a threshold max(ψ) 0.1, we would have

achieved the correct top-hat classification. The LS errors are provided in Table C.36.

Table C.36: LS errors for the extracted and hypothesized data sets for scenario 2,
top-hat example 1.

Data ‖x− s(Θn)‖2
2

Extracted 4.2135× 107

Closest 9.2129× 107
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C.3.2 Y Parameter. In this example, we generate a top-hat target located at

y = 4 m with an SNR of 30 dB. The top-hat target is simulated using the parameters

listed in Table C.37.

Table C.37: The parameters used to create the top-hat target for scenario 2, example
2.

Shape X Y Z H L r γ̃ θ̃ φ̃
top-hat 0 4 0 2 - 1 0 0 0

The BP results for each shape are provided in Figure C.15.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.15: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 2, top-hat example 2.
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The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table C.38.

Table C.38: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, top-hat example 2.

Shape max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)
plate 4.7940× 10−4 0.0076 -0.0010

dihedral 0.0525 0.1144 0.0296
sphere 0.0176 1.7032 -0.3230
top-hat 0.0695 2.4489 -0.4203

trihedral 2.5039× 10−5 7.9156× 10−4 −1.3327× 10−4

cylinder 0.0066 0.4665 -0.0867

This method incorrectly leads to a dihedral classification. The associated ex-

tracted parameter set is provided in Table C.39.

Table C.39: Estimated versus true parameters for scenario 2, top-hat example 2.

Shape X Y Z H L r γ̃ θ̃ φ̃
True top-hat 0 4 0 - - 2 0 0 0

Expected top-hat 0 5 0 - - 2 0 0 0
Estimated dihedral -5 5 10 0.5 0.5 - 0 0 0

Initially, we assume that the algorithm should choose the top-hat corresponding

to the closest parameter set. Therefore, the expected parameter set would be Θ =

[0, 5, 0, 2, 0, 1, 0, 0, 0]. This set corresponds to atom 1193 within the top-hat dictionary.

The extracted parameter set corresponds to atom 117 within the dihedral dictionary.

The total LS errors for the extracted data versus the hypothesized closest data are

provided in Table C.40.

Table C.40: LS errors for the extracted and hypothesized data sets for scenario 2,
top-hat example 2.

Data ‖x− s(Θn)‖2
2

Extracted 4.8717× 107

Closest 9.0342× 107
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C.3.3 Z Parameter. In this example, we generate a top-hat target located at

z = 4 m with an SNR of 30 dB. The top-hat target is simulated using the parameters

listed in Table C.41.

Table C.41: The parameters used to create the top-hat target for scenario 2, example
3.

Shape X Y Z H L r γ̃ θ̃ φ̃
top-hat 0 0 4 2 - 1 0 0 0

The BP results for each shape are provided in Figures C.16-C.17.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.16: BP results for the first iteration for each of the reduced shape dictionaries
used in the feature extraction problem in scenario 2, top-hat example 3.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.17: BP results for the final iteration for each of the reduced shape dictionar-
ies used in the feature extraction problem in scenario 2, top-hat example
3.
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The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table C.34.

Table C.42: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, top-hat example 3.

Shape Iteration max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)

plate
1 3.1801× 10−4 0.0062 −9.3117× 10−4

2 0.1905 0.2641 0.1377

dihedral
1 0.0069 0.0512 -0.0034
2 0.0069 0.0512 -0.0034

sphere
1 0.0156 1.6928 -0.3230
2 1.3527 31.9828 -5.0438

top-hat
1 0.1095 3.0124 -0.4930
2 0.1095 3.0124 -0.4930

trihedral
1 2.1498× 10−5 9.1958× 10−4 −1.6242× 10−4

2 2.1424× 10−5 0.0668 -0.0133

cylinder
1 0.0083 0.4255 -0.0768
2 1.6771 10.0025 -0.3234

This method incorrectly classifies the shape as a combination of a trihedral and

a plate. The associated extracted parameter set is provided in Table C.43.

Table C.43: Estimated versus true parameters for scenario 2, top-hat example 3.

Shape X Y Z H L r γ̃ θ̃ φ̃
True top-hat 0 0 4 2 - 1 0 0 0

Expected top-hat 0 0 5 2 - 1 0 0 0
Estimated trihedral -5 5 -5 0.5 - - 0 0 0

Estimated plate -5 5 -5 1 0.5 - 0 -30 0

Initially, we assume that the algorithm should choose the top-hat corresponding

to the closest parameter set. Therefore, the expected parameter set would be Θ =

[0, 0, 5, 2, 0, 1, 0, 0, 0]. This set corresponds to atom 1213 within the top-hat dictionary.

The extracted parameter sets correspond to atom 42 within the trihedral dictionary

and atom 792 within the plate dictionary. The total LS errors for the extracted data

versus the hypothesized closest data are provided in Table C.44. The extracted error,

for this example,is greater than the hypothesis data. This is due to the incorrect shape
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Table C.44: LS errors for the extracted and hypothesized data sets for scenario 2,
top-hat example 3.

Data ‖x− s(Θn)‖2
2

Extracted 1.0707× 108

Closest 8.9945× 107

classification and model order estimation. Future research should include adding a

threshold, max(ψ) 0.1 to the algorithm.

C.3.4 RCS Parameters. In this section we discuss the results of two example

target scenes. Each of the scenes includes a top-hat that is generated using a height

or radius parameter that falls outside of the dictionary parameter space resolution

with an SNR of 30 dB. The top-hat targets are simulated using the parameters listed

in Table C.45.

Table C.45: The parameters used to create the top-hat target for scenario 2, examples
4 and 5.

Shape X Y Z H L r γ̃ θ̃ φ̃
top-hat 1 0 0 0 2.3 - 1 0 0 0
top-hat 2 0 0 0 2 - 1.3 0 0 0

The BP results for each shape are provided in Figures C.18-C.20.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.18: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 2, top-hat example 4.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.19: BP results for the first iteration for each of the reduced shape dictionaries
used in the feature extraction problem in scenario 2, top-hat example 5.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.20: BP results for the second iteration for each of the reduced shape dic-
tionaries used in the feature extraction problem in scenario 2, top-hat
example 5.
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The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table C.46 and

Table C.47.

Table C.46: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, top-hat example 4.

Shape max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)
plate 4.4934× 10−4 0.0080 -0.0011

dihedral 0.0472 0.1212 0.0230
sphere 0.0320 2.0478 -0.3776
top-hat 1.3139 1.4430 1.0253

trihedral 3.0412× 10−5 0.0010 −1.7378× 10−4

cylinder 0.0089 0.5709 -0.1052

Table C.47: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, top-hat example 5.

Shape Iteration max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)

plate
1 3.5777× 10−4 0.0078 -0.0012
2 0.1906 0.2591 0.1388

dihedral
1 0.0088 0.0592 -0.0030
2 0.0088 0.0592 -0.0030

sphere
1 0.0163 1.7751 -0.3387
2 3.3965 54.1462 -7.4328

top-hat
1 0.2370 4.3769 -0.6383
2 0.2370 4.3769 -0.6383

trihedral
1 2.8690× 10−5 0.0010 −1.7189× 10−4

2 2.8038× 10−5 0.0669 -0.0133

cylinder
1 0.0075 0.4848 -0.0895
2 0.6154 10.1761 -1.4198

In the first example, the closest parameter set contained within the top-hat dic-

tionary corresponds to Θ = [0, 0, 0, 2.5, 1, 0, 0, 0, 0]. The algorithm successfully classi-

fies the target as a top-hat. The estimated parameter set also corresponds to the clos-

est set. In the second example, the closest parameter set is Θ = [0, 0, 0, 2, 1.5, 0, 0, 0, 0].

The algorithm incorrectly estimates the model order as 2 and classifies the target a

plate and a trihedral. The resulting parameter set estimations are provided in Ta-

ble C.48 and Table C.49.
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Table C.48: Estimated versus true parameters for scenario 2, top-hat example 4.

Shape X Y Z H L r γ̃ θ̃ φ̃
True top-hat 0 0 0 2.3 - 1 0 0 0

Expected top-hat 0 0 0 2.5 - 1 0 0 0
Estimated top-hat 0 0 0 2.5 - 1 0 0 0

Table C.49: Estimated versus true parameters for scenario 2, top-hat example 5.

Shape X Y Z H L r γ̃ θ̃ φ̃
True top-hat 0 0 0 2 - 1.3 0 0 0

Expected top-hat 0 0 0 2 - 1.5 0 0 0
Estimated trihedral 5 -5 -10 0.5 - - 0 0 0

Estimated plate 5 -5 -10 1 0.5 - 0 -30 0

C.4 Trihedral Results

C.4.1 X Parameter. In this example, we generate a trihedral target located

at x = 4 m with an SNR of 30 dB. The trihedral target is simulated using the

parameters listed in Table C.50. The BP results for each shape are provided in

Table C.50: The parameters used to create the trihedral target for scenario 2, example
1.

Shape X Y Z H L r γ̃ θ̃ φ̃
trihedral 4 0 0 2 - - 0 0 0

Figures C.21-C.22.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.21: BP results for the first iteration for each of the reduced shape dictionaries
used in the feature extraction problem in scenario 2, trihedral example
1.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.22: BP results for the final iteration for each of the reduced shape dictio-
naries used in the feature extraction problem in scenario 2, trihedral
example 1.
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The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table C.51. This

Table C.51: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, trihedral example 1.

Shape Iteration max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)

plate
1 0.0452 1.7269 -0.3002
2 0.7814 2.6540 0.2506

dihedral
1 0.0037 0.0895 -0.0142
2 0.0037 0.0895 -0.0142

sphere
1 36.7881 936.0928 -150.4304
2 34.9225 962.5994 -157.5973

top-hat
1 0.0178 2.2200 -0.4262
2 0.0178 2.2200 -0.4262

trihedral
1 0.1814 0.7681 0.0278
2 0.0991 0.6689 -0.0347

cylinder
1 12.8528 208.3579 -28.8188
2 12.4624 209.5427 -29.4462

method overestimates the model order and incorrectly leads to a trihedral and a plate

classification. The extracted shapes along with their associated parameter sets are

provided in Table C.52.

Table C.52: Estimated versus true parameters for scenario 2, trihedral example 1.

Shape X Y Z H L r γ̃ θ̃ φ̃
True trihedral 4 0 0 2 - - 0 0 0

Expected trihedral 5 0 0 2 - - 0 0 0
Estimated trihedral 5 -10 0 1 - - 0 0 0

Estimated plate 5 10 0 1 1 - 0 -30 0

Initially, we make the hypothesis that the parameter set extracted should be

the closest dictionary contained parameter set, Θ = [5, 0, 0, 2, 0, 0, 0, 0, 0] (atom 439).

The LS errors are provided in Table C.53.

C.4.2 Y Parameter. In this example, we generate a trihedral target located

at y = 4 m with an SNR of 30 dB. The trihedral target is simulated using the

parameters listed in Table C.54.
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Table C.53: LS errors for the extracted and hypothesized data sets for scenario 2,
trihedral example 1.

Data ‖x− s(Θn)‖2
2

Extracted 1.7642× 1010

Closest 3.6814× 1010

Table C.54: The parameters used to create the trihedral target for scenario 2, example
2.

Shape X Y Z H L r γ̃ θ̃ φ̃
trihedral 0 4 0 2 - - 0 0 0

The BP results for each shape are provided in Figures C.23-C.25.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.23: BP results for the first iteration for each of the reduced shape dictionaries
used in the feature extraction problem in scenario 2, trihedral example
2.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.24: BP results for the second iteration for each of the reduced shape dic-
tionaries used in the feature extraction problem in scenario 2, trihedral
example 2.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.25: BP results for the final iteration for each of the reduced shape dictio-
naries used in the feature extraction problem in scenario 2, trihedral
example 2.
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The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table C.55.

Table C.55: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, trihedral example 2.

Shape Iteration max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)

plate
1 0.3154 3.5692 -0.3985
2 0.3154 3.5692 -0.3985
3 0.3727 3.8158 -0.3905

dihedral
1 0.0042 0.0762 -0.0110
2 0.0037 0.1820 -0.0327
3 0.0037 0.1820 -0.0327

sphere
1 29.3667 682.7459 -107.1825
2 29.3667 682.7459 -107.1825
3 29.0975 685.6160 108.0257

top-hat
1 0.0130 2.1260 -0.4122
2 0.0189 2.5048 -0.4821
3 0.0189 2.5048 -0.4821

trihedral
1 0.0485 0.3774 -0.0270
2 0.0485 0.3774 -0.0270
3 0.0482 0.3463 -0.0211

cylinder
1 5.1166 129.7189 -20.8272
2 5.1166 129.7189 -20.8272
3 4.9592 127.4049 -20.5218

This method overestimates the model order and incorrectly leads to shape classi-

fications including two trihedrals and a dihedral. The associated extracted parameter

sets are provided in Table C.56.

Table C.56: Estimated versus true parameters for scenario 2, trihedral example 2.

Shape X Y Z H L r γ̃ θ̃ φ̃
True trihedral 0 4 0 2 - - 0 0 0

Expected trihedral 0 5 0 2 - - 0 0 0
Estimated dihedral 0 -5 5 0.5 0.5 - 0 0 0

Estimated trihedral 1 5 -5 -10 0.5 - - 0 0 0
Estimated trihedral 2 -5 10 10 0.5 - - 0 0 0

Initially, we assume that the algorithm should choose the trihedral correspond-

ing to the closest parameter set. Therefore, the expected parameter set would be
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Θ = [0, 5, 0, 2, 0, 0, 0, 0, 0]. The total LS errors for the extracted data versus the

hypothesized closest data are provided in Table C.57.

Table C.57: LS errors for the extracted and hypothesized data sets for scenario 2,
trihedral example 2.

Data ‖x− s(Θn)‖2
2

Extracted 1.8090× 1010

Closest 3.6082× 1010

C.4.3 Z Parameter. In this example, we generate a trihedral target located

at z = 4 m with an SNR of 30 dB. The trihedral target is simulated using the

parameters listed in Table C.58.

Table C.58: The parameters used to create the trihedral target for scenario 2, example
3.

Shape X Y Z H L r γ̃ θ̃ φ̃
trihedral 0 0 4 2 - - 0 0 0

The BP results for each shape are provided in Figures C.26-C.28.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.26: BP results for the first iteration for each of the reduced shape dictionaries
used in the feature extraction problem in scenario 2, trihedral example
3.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.27: BP results for the second iteration for each of the reduced shape dic-
tionaries used in the feature extraction problem in scenario 2, trihedral
example 3.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.28: BP results for the final iteration for each of the reduced shape dictio-
naries used in the feature extraction problem in scenario 2, trihedral
example 3.
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The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table C.59.

Table C.59: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, trihedral example 3.

Shape Iteration max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)

plate
1 1.5926 3.8507 0.8224
2 0.9492 3.0205 0.3451
3 0.3059 2.1984 -0.1338

dihedral
1 0.0039 0.0752 -0.0112
2 0.0039 0.0752 -0.0112
3 0.0039 0.0752 -0.0112

sphere
1 46.1615 917.5072 -137.3399
2 45.9706 918.6691 -137.7632
3 45.7797 921.2261 -138.4655

top-hat
1 0.0147 2.2082 -0.4270
2 0.0147 2.2082 -0.4270
3 0.0147 2.2082 -0.4270

trihedral
1 0.0853 0.4977 -0.0143
2 0.0851 0.4801 -0.0109
3 0.0850 0.4755 -0.0101

cylinder
1 13.9106 181.4277 -22.3749
2 13.8515 176.4864 -21.4457
3 13.7924 175.0444 -21.2164

This method overestimates the model order and incorrectly leads to shape clas-

sifications including two plates and a trihedral. The associated extracted parameter

sets are provided in Table C.60.

Table C.60: Estimated versus true parameters for scenario 2, trihedral example 3.

Shape X Y Z H L r γ̃ θ̃ φ̃
True trihedral 0 0 4 2 - - 0 0 0

Expected trihedral 0 0 5 2 - - 0 0 0
Estimated trihedral 0 -10 5 0.5 - - 0 0 0
Estimated plate 1 5 5 -5 1 1.5 - 0 -30 0
Estimated plate 2 5 5 -5 1 1.5 - 0 -30 0

Initially, we assume that the algorithm should choose the trihedral correspond-

ing to the closest parameter set. Therefore, the expected parameter set would be
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Θ = [0, 0, 5, 2, 0, 0, 0, 0, 0]. The total LS errors for the extracted data versus the

hypothesized closest data are provided in Table C.61.

Table C.61: LS errors for the extracted and hypothesized data sets for scenario 2,
trihedral example 3.

Data ‖x− s(Θn)‖2
2

Extracted 1.7839× 1010

Closest 3.5890× 1010

C.4.4 RCS Parameters. In this example, we generate a trihedral target with

RCS parameter h = 2.3 m with an SNR of 30 dB. The trihedral target is simulated

using the parameters listed in Table C.62.

Table C.62: The parameters used to create the trihedral target for scenario 2, example
4.

Shape X Y Z H L r γ̃ θ̃ φ̃
trihedral 0 0 0 2.3 - - 0 0 0

The BP results for each shape are provided in Figure C.29.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.29: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 2, trihedral example 4.
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The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table C.63.

Table C.63: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, trihedral example 4.

Shape max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)
plate 0.7625 5.8507 0.1819

dihedral 0.0061 0.1041 -0.0043
sphere 45.3260 1.0681× 103 -61.4793
top-hat 0.0192 2.8672 -0.2675

trihedral 1.3949 1.4189 1.2530
cylinder 12.1820 309.4477 -18.7628

For this example, the shape is correctly classified as a trihedral. The expected

parameter set estimation is Θ = [0, 0, 0, 2.5, 0, 0, 0, 0, 0]. The extracted parameter set

is provided inTable C.64.

Table C.64: Estimated versus true parameters for scenario 2, trihedral example 4.

Shape X Y Z H L r γ̃ θ̃ φ̃
True trihedral 0 0 0 2.3 - - 0 0 0

Expected trihedral 0 0 0 2.5 - - 0 0 0
Estimated trihedral 0 0 0 2.5 - - 0 0 0

C.5 Cylinder Results

C.5.1 X Parameter. In this example, we generate a cylinder target located

at x = 4 m with an SNR of 30 dB. The cylinder target is simulated using the param-

eters listed in Table C.65. The BP results for each shape are provided in Figure C.30.

Table C.65: The parameters used to create the cylinder target for this scene.

Shape X Y Z H L r γ̃ θ̃ φ̃
cylinder 4 0 0 - 2 1 0 0 0
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.30: BP results for the first iteration for each of the reduced shape dictionaries
used in the feature extraction problem in scenario 2, cylinder example
1.
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The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table C.66. This

Table C.66: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, cylinder example 1.

Shape max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)
plate 0.0405 0.0862 0.0233

dihedral 2.1546× 10−4 0.0040 −5.8105× 10−4

sphere 0.1759 4.5267 -0.7294
top-hat 5.2297× 10−4 0.0820 -0.0159

trihedral 2.2578× 10−4 0.0024 −2.4537× 10−4

cylinder 0.2494 2.6869 -0.2880

method incorrectly leads to a plate classification. The extracted shape along with its

associated parameter set is provided in Table C.67.

Table C.67: Estimated versus true parameters for scenario 2, cylinder example 1.

Shape X Y Z H L r γ̃ θ̃ φ̃
True cylinder 4 0 0 - 2 1 0 0 0

Expected cylinder 5 0 0 - 2 1 0 0 0
Estimated plate 5 -10 0 0.5 0.5 - 0 -30 0

Initially, we make the hypothesis that the parameter set extracted should be the

closest dictionary contained representative parameter set, Θ = [5, 0, 0, 0, 2, 1, 0, 0, 0].

The LS errors are provided in Table C.68.

Table C.68: LS errors for the extracted and hypothesized data sets for scenario 2,
cylinder example 1.

Dictionary Atom ‖x− s(Θn)‖2
2

Extracted 3.1414× 106

Closest 2.2627× 106

C.5.2 Y Parameter. In this example, we generate a cylinder target lo-

cated at y = 4 m with an SNR of 30 dB. The cylinder target is simulated using the

parameters listed in Table C.69.

The BP results for each shape are provided in Figure C.31.
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Table C.69: The parameters used to create the cylinder target for scenario 2, example
2.

Shape X Y Z H L r γ̃ θ̃ φ̃
cylinder 0 4 0 - 2 1 0 0 0
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.31: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 2, cylinder example 2.
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The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table C.70.

Table C.70: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, cylinder example 2.

Shape max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)
plate 0.0316 0.1141 0.0088

dihedral 1.4602× 10−4 0.0036 −5.7679× 10−4

sphere 0.3354 4.7249 -0.6096
top-hat 5.9643× 10−4 0.0852 -0.0164

trihedral 2.9651× 10−4 0.0024 −1.8896× 10−4

cylinder 0.7025 3.6024 -0.0179

This method incorrectly leads to a plate classification. However, the BP opti-

mization results for the cylinder dictionary identified the correct molecule containing

the closes parameter set, Θ = [0, 5, 0, 0, 2, 1, 0, 0, 0]. The algorithm failed to choose

this molecule because the largest (ψ − λ · ‖ψ‖1), shown in Table C.70, corresponded

to the plate dictionary. The extracted parameter set is provided in Table C.71. The

Table C.71: Estimated versus true parameters for scenario 2, cylinder example 2.

Shape X Y Z H L r γ̃ θ̃ φ̃
True cylinder 0 4 0 - 2 1 0 0 0

Expected cylinder 0 5 0 - 2 1 0 0 0
Estimated plate -5 5 10 0.5 0.5 - 0 -30 0

expected cylinder also leads to a lower LS error, as shown in Table C.72.

Table C.72: LS errors for the extracted and hypothesized data sets for scenario 2,
cylinder example 2.

Data ‖x− s(Θn)‖2
2

Extracted 3.1518× 106

Closest 1.2202× 106

C.5.3 Z Parameter. In this example, we generate a cylinder target located at

z = 4 m with an SNR of 30 dB. The cylinder target is simulated using the parameters

listed in Table C.73.
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Table C.73: The parameters used to create the cylinder target for scenario 2, example
3.

Shape X Y Z H L r γ̃ θ̃ φ̃
cylinder 0 0 4 - 2 1 0 0 0

The BP results for each shape are provided in Figures C.32-C.33.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.32: BP results for the first iteration for each of the reduced shape dictionaries
used in the feature extraction problem in scenario 2, cylinder example
3.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.33: BP results for the final iteration for each of the reduced shape dictionar-
ies used in the feature extraction problem in scenario 2, cylinder example
3.
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The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table C.74.

Table C.74: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, cylinder example 3.

Shape Iteration max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)

plate
1 0.0113 0.0698 -0.0026
2 0.1890 0.2763 0.1338

dihedral
1 2.2883× 10−4 0.0035 −4.7581× 10−4

2 2.2883× 10−4 0.0035 −4.7581× 10−4

sphere
1 0.5424 6.6633 -0.7902
2 3.5947 55.2898 -7.4632

top-hat
1 4.6976× 10−4 0.0828 -0.0160
2 4.6976× 10−4 0.0828 -0.0161

trihedral
1 7.8412× 10−5 0.0022 −3.5624× 10−4

2 7.0216× 10−5 0.0680 -0.0135

cylinder
1 0.3756 3.7915 -0.3827
2 1.6222 16.4810 -1.6739

This method incorrectly classifies the shape as a combination of a trihedral and

a plate. The associated extracted parameter set is provided in Table C.75.

Table C.75: Estimated versus true parameters for scenario 2, cylinder example 3.

Shape X Y Z H L r γ̃ θ̃ φ̃
True cylinder 0 0 4 - 2 1 0 0 0

Expected cylinder 0 0 5 - 2 1 0 0 0
Estimated trihedral 10 0 -10 0.5 - - 0 0 0

Estimated plate 10 0 -10 1 0.5 - 0 -30 0

The total LS errors for the extracted data versus the hypothesized closest data

are provided in Table C.76.

Table C.76: LS errors for the extracted and hypothesized data sets for scenario 2,
cylinder example 3.

Data ‖x− s(Θn)‖2
2

Extracted 6.2758× 107

Closest 2.2399× 106
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C.5.4 RCS Parameters. In this section we discuss the results of two example

target scenes. Each of the scenes includes a cylinder that is generated using a length

or radius parameter that falls outside of the dictionary parameter space resolution

with an SNR of 30 dB. The cylinder targets are simulated using the parameters listed

in Table C.77.

Table C.77: The parameters used to create the cylinder target for scenario 2, examples
4 and 5.

Shape X Y Z H L r γ̃ θ̃ φ̃
cylinder 1 0 0 0 - 2.3 1 0 0 0
cylinder 2 0 0 0 - 2 1.3 0 0 0

The BP results for each shape are provided in Figures C.34-C.36.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.34: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 2, cylinder example 4.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.35: BP results for the first iteration for each of the reduced shape dictionaries
used in the feature extraction problem in scenario 2, cylinder example
5.

184



(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure C.36: BP results for the final iteration for each of the reduced shape dictionar-
ies used in the feature extraction problem in scenario 2, cylinder example
5.
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The maximum coefficient returned by the BP algorithm for each of the shape

dictionaries and the sparsities, described by ‖ψ‖1, are provided in Table C.78 and

Table C.79.

Table C.78: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, cylinder example 4.

Shape max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)
plate 0.0221 0.0888 0.0043

dihedral 2.5921× 10−4 0.0036 −4.5178× 10−4

sphere 0.3315 5.5452 -0.7775
top-hat 7.0102× 10−4 0.0914 -0.0176

trihedral 4.5497× 10−5 0.0020 −3.5471× 10−4

cylinder 1.0207 3.6033 0.3000

Table C.79: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 2, cylinder example 5.

Shape Iteration max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)

plate
1 0.0039 0.0696 -0.0100
2 0.1792 0.2891 0.1214

dihedral
1 1.6101× 10−4 0.0031 −4.6081× 10−4

2 1.6101× 10−4 0.0031 −4.6081× 10−4

sphere
1 0.1994 6.1876 -1.0381
2 3.1234 53.0549 -7.4876

top-hat
1 6.7742× 10−4 0.0932 -0.0180
2 6.7742× 10−4 0.0932 -0.0180

trihedral
1 1.2960× 10−4 0.0021 −2.9104× 10−4

2 1.2196× 10−4 0.0678 -0.0134

cylinder
1 0.5900 4.2337 -0.2567
2 1.0662 13.9655 -1.7269

In the first example, the closest parameter set contained within the cylinder dic-

tionary corresponds to Θ = [0, 0, 0, 0, 2.5, 1, 0, 0, 0]. The algorithm successfully classi-

fies the target as a cylinder. The estimated parameter set also corresponds to the clos-

est set. In the second example, the closest parameter set is Θ = [0, 0, 0, 0, 2, 1.5, 0, 0, 0].

The algorithm incorrectly overestimates the model order and classifies the target a

plate and a trihedral. The resulting parameter set estimations are provided in Ta-

ble C.80 and Table C.81.
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Table C.80: Estimated versus true parameters for scenario 2, cylinder example 4.

Shape X Y Z H L r γ̃ θ̃ φ̃
True cylinder 0 0 0 - 2.3 1 0 0 0

Expected cylinder 0 0 0 - 2.5 1 0 0 0
Estimated cylinder 0 0 0 - 2.5 1 0 0 0

Table C.81: Estimated versus true parameters for scenario 2, cylinder example 5.

Shape X Y Z H L r γ̃ θ̃ φ̃
True cylinder 0 0 0 - 2 1.3 0 0 0

Expected cylinder 0 0 0 - 2 1.5 0 0 0
Estimated trihedral 0 -10 0 0.5 - - 0 0 0

Estimated plate 0 -10 0 1 0.5 - 0 -30 0
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Appendix D. Scenario 3 Results

D.1 Dihedral, Trihedral, and Top-hat Target Scene

This section will discuss the extraction and classification results for a target

scene containing multiple targets that include a dihedral, trihedral and a top-hat.

Each of the targets directly corresponds to a dictionary atom. The parameters selected

for each shape in this example are given in Table D.1. The measured data is simulated

Table D.1: The parameters used to create scene 3, example 2.

Shape X Y Z H L r γ̃ θ̃ φ̃
dihedral 0 10 0 2 2 - 0 0 0
trihedral 5 -5 0 1 - - 0 0 0
top-hat 0 0 5 2 - 1 0 0 0

with an SNR of 30 dB. Each of the shapes correspond to atoms within their respective

shape dictionaries. This correspondence is provided in Table D.2.

Table D.2: The correspondence mapping for the measured data and dictionary atoms
for scenario 3, example 2.

Shape Orig. Dict. Atom Molecule Molecule Atom
dihedral 2698 23 66
trihedral 184 59 2
top-hat 1213 213 4

The iterative PH subtraction process leads to multiple iterations of the BP

algorithm when extracting multiple shapes from a target scene. A single shape corre-

sponding to the largest contribution of energy in extracted from each iteration. The

BP results for each shape and iteration are provided in Figures D.1-D.3.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure D.1: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 3, example 2 on the first iteration.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure D.2: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 3, example 2 on the second iteration.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure D.3: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 3, example 2 on the final iteration.
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The maximum coefficients along with the calculated norms for each iteration

are shown in Table D.3.

Table D.3: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 3, example 2.

Shape Iteration max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)

plate
1 0.4364 0.5858 0.3193
2 0.4364 0.5858 0.3193
3 0.4364 0.5858 0.3193

dihedral
1 0.8154 0.9200 0.6314
2 0.0082 0.9200 -0.1758
3 0.0040 0.9200 -0.1800

sphere
1 0.4254 24.3958 -4.4538
2 0.4254 24.3958 -4.4538
3 0.4254 24.3958 -4.4538

top-hat
1 1.7119 6.2231 0.4672
2 1.7111 6.2231 0.4665
3 0.0078 6.2231 -1.2368

trihedral
1 2.9× 10−4 0.0255 -0.0048
2 2.9× 10−4 0.0255 -0.0048
3 2.9× 10−4 0.0255 -0.0048

cylinder
1 0.6091 9.7637 -1.3437
2 0.6091 9.7637 -1.3437
3 0.6091 9.7637 -1.3437

The sparsest solution pertaining to the largest coefficient for each iteration cor-

responds to a single shape. The shapes returned for each iteration respectively are

dihedral, top-hat, and trihedral which correctly correspond to the shapes within the

target scene. The molecules corresponding to each coefficient maximum are selected

for parameter estimation.

Estimates of the posterior log-likelihoods are calculated for each atom within

each of the dihedral and top-hat molecules. The BP results are used for determining

the sphere parameters, since the dictionary was reduced prior to implementing the

molecule method. The estimates for the dihedral and top-hat molecules are plotted

and provided in Figure D.4. The largest log-likelihoods, along with the BP results for
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(a) Posterior log-likelihood estimates associated
with each atom within the selected dihedral
molecule.

(b) Posterior log-likelihood estimates associated
with each atom within the selected top-hat
molecule.

Figure D.4: Posterior log-likelihood estimates for each shape and iteration for scenario
3, example 2.

the sphere, correspond to the correct atoms as shown by the associated parameters

provided in Table D.4.

Table D.4: Extracted parameter sets for each shape compared to truth for scenario
3, example 2.

Shape X Y Z H L r γ̃ θ̃ φ̃
True dihedral 0 10 0 2 2 - 0 0 0

Estimated dihedral 0 10 0 2 2 - 0 0 0
True trihedral 5 -5 0 1 - - 0 0 0

Estimated trihedral 5 -5 0 1 - - 0 0 0
True top-hat 0 0 5 2 - 1 0 0 0

Estimated top-hat 0 0 5 2 - 1 0 0 0

The algorithm successfully extracted the correct features and parameters.

D.2 Sphere, Top-hat, and Cylinder Target Scene

This section will discuss the extraction and classification results for a target

scene containing multiple targets that include a sphere, top-hat and a cylinder. Each

of the targets directly corresponds to a dictionary atom. The parameters selected for

each shape in this example are given in Table D.5. The measured data is simulated
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Table D.5: The parameters used to create scene 3, example 3.

Shape X Y Z H L r γ̃ θ̃ φ̃
sphere 5 0 0 - - 2 0 0 0
top-hat -5 5 0 1 - 3 0 0 0
cylinder 0 -5 0 - 3 0.5 0 0 0

with an SNR of 30 dB. Each of the shapes correspond to atoms within their respective

shape dictionaries. This correspondence is provided in Table D.6.

Table D.6: The correspondence mapping for the measured data and dictionary atoms
for scenario 3, example 3.

Shape Orig. Dict. Atom Molecule Molecule Atom
sphere 439 - -
top-hat 3942 692 2
cylinder 683 28 11

The iterative PH subtraction process leads to multiple iterations of the BP

algorithm when extracting multiple shapes from a target scene. A single shape corre-

sponding to the largest contribution of energy in extracted from each iteration. The

BP results for each shape and iteration are provided in Figures D.5-D.7.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure D.5: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 3, example 3 on the first iteration.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure D.6: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 3, example 3 on the second iteration.
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(a) BP result using the reduced plate dictionary. (b) BP result using the reduced dihedral dictio-
nary.

(c) BP result using the reduced trihedral dictio-
nary.

(d) BP result using the reduced sphere dictionary.

(e) BP result using the reduced cylinder dictio-
nary.

(f) BP result using the reduced top-hat dictionary.

Figure D.7: BP results for each of the reduced shape dictionaries used in the feature
extraction problem in scenario 3, example 3 on the final iteration.
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The maximum coefficients along with the calculated norms for each iteration

are shown in Table D.7.

Table D.7: Maximum coefficients from each shape dictionary along with the `1 norm
(sparsity descriptor) for scenario 3, example 3.

Shape Iteration max(ψ) ‖ψ‖1 (max(ψ)− λ · ‖ψ‖1)

plate
1 0.4364 0.5858 0.3193
2 0.4364 0.5858 0.3193
3 0.4364 0.5858 0.3193

dihedral
1 0.8154 0.9200 0.6314
2 0.0082 0.9200 -0.1758
3 0.0040 0.9200 -0.1800

sphere
1 0.4254 24.3958 -4.4538
2 0.4254 24.3958 -4.4538
3 0.4254 24.3958 -4.4538

top-hat
1 1.7119 6.2231 0.4672
2 1.7111 6.2231 0.4665
3 0.0078 6.2231 -1.2368

trihedral
1 2.9× 10−4 0.0255 -0.0048
2 2.9× 10−4 0.0255 -0.0048
3 2.9× 10−4 0.0255 -0.0048

cylinder
1 0.6091 9.7637 -1.3437
2 0.6091 9.7637 -1.3437
3 0.6091 9.7637 -1.3437

The sparsest solution pertaining to the largest coefficient for each iteration cor-

responds to a single shape. The shapes returned for each iteration respectively are

top-hat, cylinder, and sphere which correctly correspond to the shapes within the

target scene. The molecules corresponding to each coefficient maximum are selected

for parameter estimation.

Estimates of the posterior log-likelihoods are calculated for each atom within

the top-hat and cylinder molecules. As in example 2, the BP results are used for deter-

mining the sphere parameters. The estimates for the top-hat and cylinder molecules

are plotted and provided in Figure D.4. The largest log-likelihoods, along with the

BP results for the sphere, correspond to the correct atoms as shown by the associated

parameters provided in Table D.8.
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(a) Posterior log-likelihood estimates associated
with each atom within the selected top-hat
molecule.

(b) Posterior log-likelihood estimates associated
with each atom within the selected cylinder
molecule.

Figure D.8: Posterior log-likelihood estimates for each shape and iteration for scenario
3, example 3.

Table D.8: Extracted parameter sets for each shape compared to truth for scenario
3, example 3.

Shape X Y Z H L r γ̃ θ̃ φ̃
True sphere 5 0 0 - - 2 0 0 0

Estimated sphere 5 0 0 - - 2 0 0 0
True top-hat -5 5 0 1 - 3 0 0 0

Estimated top-hat -5 5 0 1 - 3 0 0 0
True cylinder 0 -5 0 - 3 0.5 0 0 0

Estimated cylinder 0 -5 0 - 3 0.5 0 0 0

The algorithm successfully extracted the correct features and parameters.
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